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Modeling enhancement and suppression of vibrational Feshbach resonances
in positron annihilation on molecules
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Experiments have shown that positrons can attach to molecules via vibrational Feshbach resonances. This leads
to increased annihilation rates, the magnitudes of which depend upon molecular structure. Presented here is a
simplified rate-equation model to describe the competition between annihilation while the positron is attached to
the molecule, positron ejection from the entrance state, and diffusion of the vibrational energy to multimode states
followed by similar ejection due to vibrational deexcitation. The latter ejection process can involve vibrations
more strongly coupled to the positron continuum, producing suppression of the annihilation, or those more weakly
coupled to the continuum, resulting in enhanced annihilation rates. This model elucidates the role that mode
coupling can play in determining resonant annihilation amplitudes. Simple limits are obtained and compared
with experimental results for selected molecules.
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I. INTRODUCTION

While positron interactions with ordinary matter are im-
portant in a variety of contexts including materials sci-
ence, medicine, and astrophysics [1–3], many fundamental
processes remain to be understood. The focus here is one
such process, namely, positron annihilation on molecules. It
has been shown experimentally that positrons bind to most
polyatomic molecules [4–6]. While less mature than the
experimental studies, theories are now also available to predict
positron binding energies for selected small molecules [7–9].

Attachment occurs in positron-molecule collisions via ex-
citation of a vibrational Feshbach resonance (VFR) involving
the excitation of one or more vibrational modes. The resulting
positron-molecule complex is not a true bound state but a
resonance, because there is still sufficient vibrational energy to
eject the positron. As a result, the positron can subsequently be
ejected from the molecule by the deexcitation of a vibrational
mode or modes. However, while attached, the annihilation rate
is enhanced greatly as compared to that for a simple collision.
All positrons that remain on the molecule will annihilate if the
dwell time is �1–10 ns.

Annihilation rates are typically expressed in terms of the
dimensionless quantity Zeff , which is obtained by normalizing
the measured annihilation rate λ by the Dirac annihilation rate
�D for a free-electron gas of the same number density nm [4],

Zeff ≡ λ

�D
= λ

πr2
0 cnm

, (1)

where c is the speed of light and r0 is the classical electron
radius. Feshbach resonances typically occur at incident
positron energies εν such that

εν = ων − εb, (2)

where εb is the positron binding energy and ων is the energy of
fundamental vibration ν. The relative positions of the various
resonances observed in a particular molecule are consistent to
within a few millielectronvolts with those predicted by Eq. (2),

*csurko@physics.ucsd.edu

thus providing evidence that the measured binding energies εb

are insensitive to the vibrational motion of the molecule, and
hence they characterize the true bound states.

A simple theory of resonant annihilation due to isolated
VFRs is successful in predicting Zeff as a function of incident
positron energy for small molecules such as methyl halides
[10]. However, this theory is inadequate to explain many
annihilation features in a range of molecules, including, for
example, large enhancements of resonances in alkanes and
the suppression of resonances in hydrocarbons in which a
hydrogen atom is replaced by a fluorine [4]. The working
hypothesis is that IVR (i.e., intramolecular vibrational en-
ergy redistribution) is involved, whereby the initially excited
vibration transfers its energy to other vibrations coupled
more weakly to the positron continuum (leading to enhanced
resonant amplitudes) or more strongly to the continuum (thus
suppressing the resonance) [4].

An open question is how these ideas can be made more
precise. Recently, we were able to trace the origin of the
enhancement and suppression of annihilation resonances in
selected molecules, such as chloroform, chloroform-d, and
acetaldehyde, to specific combinations of multimodes and
their coupling to the positron continuum relative to that of
the initially resonant fundamental [11]. Continuing this theme,
presented here is a simplified rate-equation model that further
elucidates the effect that coupling to multimode vibrations
can have on the amplitudes of the annihilation resonances.
The model attempts to describe the competition between
attachment, annihilation on the molecule, and ejection from it
by coupling a resonant mode to (for simplicity) a restricted set
of multimode states. Normalized annihilation rates are given
for simple limiting cases, and where possible, these predictions
are compared with selected observations. Additional consid-
erations and further refinements are also discussed.

II. THE ROLE OF IVR IN RESONANT ANNIHILATION

A. Model of enhancement and suppression
due to mode coupling

As discussed above, if a molecule can bind a positron,
an incident positron with energy εν , given by Eq. (2), can
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excite mode ν to become trapped on the molecule via a
vibrational Feshbach resonance. For a positron at the resonant
energy, the capture rate is proportional to the elastic rate �e

ν

for positron ejection from the molecule by deexcitation of
mode ν [4,10]. The trapped positron can then be either ejected
by this process (deexcitation of mode ν) or annihilate with
a molecular electron. Denoting �a as the rate of annihilation
in the attached state, the competition between these processes
yields a dependence of the resonant contribution to Zeff on �a

and �e
ν of the form

Zeff ∝ �a

(
�e

ν

�a + �e
ν

)
. (3)

If �e
ν � �a , all resonances have similar strengths, with

Zeff ∝ �a .
Considered here is the important practical situation, occur-

ring in all but the smallest polyatomics, in which mode ν is
coupled resonantly to multimode vibrations (i.e., combinations
or overtones involving lower-energy fundamental modes) at
a rate comparable to or greater than �e

ν . In other words, the
primary, single-mode resonance ν plays the role of an entrance
channel that, in turn, can couple to multimode vibrational
states [12]. In this case, the second factor in Eq. (3) can
be modified significantly. If the vibrational energy diffuses
to modes weakly coupled to the positron continuum by this
process, the dwell time of the positron on the molecule
will be lengthened and Zeff will be enhanced. In contrast,
if the multimode vibration contains fundamental vibrations ν

strongly coupled to the positron continuum, and if ων > εb, the
positron can be rapidly ejected, leading to a decrease in Zeff .

The model of this process, which is the focus of this paper, is
illustrated schematically in Fig. 1. A single entrance-channel,
fundamental vibration |ν〉 is coupled to a set of M multimode
vibrations (labeled |x〉) at mode coupling rate γ . For simplicity,
the M multimodes |x〉 are assumed to be identical. The
positron is initially captured into state |ν〉 at a capture rate �c

(specified below) which is proportional to �e
ν but also includes

dependence on molecular density and the energy spread of

FIG. 1. Schematic diagram of the model. An incident positron
is captured via a VFR into an entrance vibrational state |ν〉 (with
energy ων) couples at rate γ to a set of M identical multimodes
|x〉. Illustrated is |x〉 as the two-mode combination, ωm + ωn. If ωm

deexcites, for example, and ωm � εb, the positron can be ejected with
energy ε′ = ωm − εb, leaving the molecule with vibrational energy
ωn. If the escape rate �x is large (small) compared to the elastic rate
�e

ν , the dwell time on the molecule will be shorter (longer) and the
annihilation rate will be decreased (increased).

the incident positrons. The coupling rate of mode |ν〉 to the
positron continuum is �e

ν .
The model assumes that the multimodes |x〉 are coupled

to the positron continuum at a rate �x that includes partial
deexcitations of vibrations |x〉 with sufficient energy to eject
the attached positron, namely,

�x =
∑

j

�e
j , (4)

where �e
j is the elastic escape rate from the state j , and the

sum on j includes all fundamental vibrations in multimode |x〉
for which ωj � εb. Multiple deexcitations of fundamentals
in |x〉 are neglected as higher-order processes. These mul-
timode states |x〉 were considered previously in describing
broad backgrounds observed in resonant annihilation spectra
(i.e., spectral features termed statistical multimode resonant
annihilation, SMRA) [13].

The model is highly idealized in the sense that it treats all
modes |x〉 as identical, whereas it is known that, in many cases,
IVR proceeds through a tiered coupling from one mode to
combination and overtones involving two modes, then to three-
mode combinations, etc. [14,15]. The truncation assumed here
is pragmatic and motivated by the fact that consideration
of additional processes would introduce more parameters; at
present, we do not have the ability to even approximate more
than a few parameters, such as γ , �e

ν , �x , and M . Direct
excitation of these multimodes is neglected in the model.

The number of multimodes M is introduced to keep
the model simple enough to make predictions that can be
interpreted relatively easily. If a molecule has a combination
of many gray states (i.e., states that couple only weakly to
the positron continuum) and a few fast escape channels, then
the assumption that all multimodes have similar γ and act
similarly is invalid. If, on the other hand, one type of mode
dominates, then treating them as a group is plausible, and the
predictions of the model can provide insight into the relevant
physical process. As discussed below, in comparing the model
to experimental data for specific VFR, fundamental modes are
chosen for which the assumptions of the model appear to be
reasonable, namely, that the M multimodes couple similarly
to the fundamental and to the positron continuum and hence
can be considered as a group.

The mode coupling parameters γ describe the coupling
between fundamental modes and near-resonant multimodes.
While, in principle, they could be calculated theoretically, they
are not generally available for the molecules of interest. This
is a major source of uncertainty, and so, in the comparisons
below, limits are explored that are insensitive to the value of
this parameter.

Assuming dipole coupling of the positron to infrared active
modes, the rate �e

ν for mode ν is given by [10]

�e
ν = 16ωνd

2
ν

27h̄e2a2
0

h(ζ ), (5)

where dν is the transition dipole matrix element in units of
Coulomb-meters, a0 is the Bohr radius, and h(ζ ) is a dimen-
sionless function of ζ = 1 − εb/εν [10]. Positrons annihilate
in all vibrational states at the same rate �a , which can be
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written [4]

�a = πr2
0 cF

κ

2π
, (6)

where F = 0.66/a0
2 describes the electron-positron overlap,

and κ = (2mεb)1/2/h̄.
The measured annihilation rate will be the probability that

the positron is attached to the molecule in either state |ν〉 or
states |x〉, multiplied by the annihilation rate in the attached
state, �a . The quantity P ν is defined as the probability that
the positron is attached to the molecule with mode |ν〉 excited,
and P x denotes the probability that the positron is attached to
the molecule with a multimode state |x〉 excited. The effects
of finite temperature are neglected. In this notation, the rate
equations for P ν and P x are

dP ν

dt
= �c + MγP x − �′P ν, (7)

and

dP x

dt
= γP ν − �′′P x, (8)

where

�′ = Mγ + �a + �e
ν, and (9)

�′′ = γ + �a + �x (10)

are the decay rates for states associated with states |ν〉 and |x〉,
respectively. As mentioned above, it is assumed that mode |ν〉
dominates as an entrance VFR, and so direct excitation of the
|x〉 modes is not included in Eq. (8).

Considered below is the possibility that �e
ν � �x , modeling

|x〉 as a gray or dark state (i.e., vibrational states in which the
positron can remain for relatively long times without being
ejected) as well as the limit �x � �e

ν , modeling |x〉 as a
multimode state with a subset of modes that can act as potent
escape channels. Equations (7) and (8) neglect the coupling
between the multimode vibrations |x〉. This follows from the
assumption that all modes |x〉 couple to the positron continuum
and to mode |ν〉 with the same strengths per mode, �x and γ ,
respectively. Thus they are treated identically as in Eq. (8).

The steady-state solutions of Eqs. (7) and (8) are

P j = �j

�′�′′ − Mγ 2
, (11)

where j = ν or x and

�ν = �′′�c and �x = γ�c. (12)

The full time-dependent solutions for the populations P j (t)
with the initial conditions P ν = P x = 0 at t = 0 describe
exponential relaxation to the steady state and involve two
relaxation rates, ξ+ and ξ−,

P j (t) = �j

�′�′′ − Mγ 2

×
[

1 − e−ξ−t − (Aj − ξ−)

ξ+ − ξ−
(e−ξ+t − e−ξ−t )

]
, (13)

where Aν = �′ − Mγ 2/�′′, Ax = 0, and

ξ± = 1
2 {�′ + �′′ ± [(�′ − �′′)2 + 4Mγ 2]

1
2 }. (14)

As an example, consider the case of one strongly coupled,
fast-escape channel with γ � �x � �e

ν,�
a . In this case,

P ν(t) � P x(t) � �c

�x
[1 − exp(−�xt/2)]. (15)

During the transient buildup to saturation, states |ν〉 and
|x〉 are approximately equally populated (due to large γ ),
while only the population in state |x〉 escapes, and thus the
characteristic time constant τ ∼ 2/�x . For the complementary
situation in which �x � γ � �e

ν,�
a , Eq. (13) yields

P ν(t) � �c

γ
(1 − e−γ t ) � P x(t). (16)

In this limit, the population P ν is large compared to P x , and
τ ∼ 1/γ . These time-dependent solutions would be relevant,
for example, in a fast (e.g., picosecond or less) optical pump-
probe experiment where the start pulse was a photoinduced
attachment [16]. However, in the experiments done to date,
the P j reach their saturated values on time scales �1/�a ,
much faster than those that can be measured experimentally.
Thus, in the following, we consider only the steady-state values
given by Eq. (11).

The annihilation rate Zeff will be proportional to �a

multiplied by the probability that the positron is on the
molecule. Using the steady-state P j , the ensemble average
Zeff expected in experiment will be

Zeff = �a

�D
(P ν + MP x) = �a�c

�D

(
�′′ + Mγ

�′�′′ − Mγ 2

)
, (17)

where �D is the Dirac annihilation rate defined in Eq. (1).
Equation (17) is the principal governing equation in the model.

The capture rate �c for mode ν in Eq. (7) can be calculated
from the capture cross section [17]

σν(ε) = πh̄2

k2

�′�e
ν

(ε + εb − ων)2 + (h̄�′/2)2
, (18)

where ε is the incident positron energy, ων is the energy of
mode ν, and k = mv/h̄, with m the positron mass and v its
velocity. Anticipating measurements with a beam with finite
energy spread f (ε), the strength of the resonance is given by
the convolution of σν with f (ε) (cf. Ref. [4]), resulting in

σ ν � 2π2h̄�e
ν

k2�E
, (19)

where we have assumed that the spread in total energy of the
positron beam is �E � h̄�′. The capture rate �c is then given
by [4]

�c = nmσνv = π2h̄3�e
νnm

m3/2�E
√

ε/2
≡ B�e

ν, (20)

where, for use below, the second expression in Eq. (20)
defines the dimensionless parameter B to display explicitly
the dependence of �c on �e

ν .
The normalized annihilation rate Zeff defined by Eq. (17)

depends on four rates; �e
ν , �x , �a , and γ and the number

of multimodes M . To explore the dependence of Zeff on
the parameters that describe the positron-molecule coupling
and vibrational dynamics, we define the dimensionless
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enhancement and suppression factor β ′,

β ′ ≡ Zeff

(
B�a

�D

)−1

= �e
ν

(
�′′ + Mγ

�′�′′ − Mγ 2

)
. (21)

While Eq. (21) is the central result of this paper, it can be
rewritten in ways that clarify further the dependence of β ′ on
the parameters of the model. Setting γ = 0 in Eq. (21) yields
β ′ for a pure VFR

β ′VFR = �e
ν

�e
ν + �a

. (22)

Using this quantity, Eq. (21) can be rearranged to display
explicitly the role of IVR, namely,

β ′ = β ′VFR 1 + Mδ

1 + RMδ
, (23)

where the IVR coupling parameter δ is

δ = γ

�x + �a + γ
, (24)

and the suppression and enhancement ratio R is

R = �x + �a

�e
ν + �a

. (25)

As can be seen from Eq. (8), for the steady-state case
considered here, the quantity δ = P x/P ν represents the
average population of state |x〉 relative to that in state |ν〉.
It spans the range 0 � δ � 1, modulating the strength of IVR.
However, it is the parameter R alone that determines whether
or not there is enhancement or suppression of β ′ relative to
β ′VFR. Whether R is greater or less than unity (i.e., suppression
or enhancement, respectively) is seen to be independent of γ

and determined solely by the ratio �x/�e
ν .

Equation (21) can also be rewritten in another insightful
manner as

β ′ = �e
ν

〈�ν〉 , (26)

with

〈�ν〉 = �e
ν + �a + (�x + �a)Mδ

1 + Mδ
. (27)

Equation (26) indicates that β ′ is determined solely by the ratio
of �e

ν to the rate 〈�ν〉 of positron disappearance, including both
annihilation and ejection from the molecule, averaged over
state |ν〉 and the Mδ states |x〉.

To recapitulate, while all three forms of Eq. (21) are
equivalent, Eqs. (23) and (26) provide additional insights into
particular aspects of the underlying physics.

B. Limiting cases

Presented here is the scaling factor β ′ for simple but
insightful special cases, focusing on suppression due to escape
channels and enhancement due to M “gray” states. Since the
parameter γ is poorly known, one limiting case chosen is an
isolated VFR with γ = 0. The others, with one exception (case
2b below), are those where γ is assumed to be large compared
to the other relevant parameters, which yields values of β ′
independent of γ . The results are summarized in Table I.

TABLE I. Limits of the dimensionless (enhancement or suppres-
sion) factor β ′ for Zeff as defined in Eq. (21).

Effect / Case Limit β ′

Isolated VFR
γ = 0
1a �e

ν � �a 1
1b �a � �e

ν �e
ν/�a � 1

Suppression
�x,γ � �e

ν,�
a

2a (M + 1)γ � �x (M + 1)�e
ν /M�x � 1

2b �x � (M + 1)γ �e
ν /Mγ � 1

Enhancement
γ � �e

ν � �x,�a

3a �e
ν � M�x

�x � �a (M + 1) � 1

3b M�x � �e
ν

�x � �a (M + 1)�e
ν/M�x � 1

3c M � �e
ν/�x

�a � �x �e
ν/�a � 1

1. Isolated VFR

The parameter β ′ for an isolated fundamental vibration
corresponds to γ = 0 and is given by Eq. (22). For �e

ν � �a ,
β ′ → 1 and the strength of the resonance is limited by �a . If,
on the other hand, �a � �e

ν ,

β ′ → �e
ν

�a
� 1. (28)

Equation (28) corresponds to the limit in which all positrons
that attach to the molecule annihilate, namely,

Zeff = B�a

�D
β ′ = �c

�D
. (29)

2. IVR suppression due to fast escape channels

Assuming �x,γ � �e
ν , �a ,

β ′ ≈ �e
ν

(
(M + 1)γ + �x

Mγ�x

)
(30)

→ (M + 1)�e
ν

M�x
, for (M + 1)γ � �x (31)

→ �e
ν

Mγ
, for �x � (M + 1)γ. (32)

In both limits of Eq. (30), β ′ � β ′VFR which results
in suppression of the resonance. In the second limit, the
suppression is limited by the mode coupling rate γ .

3. IVR enhancement due to M gray states

Assuming that γ � �e
ν � �x � �a , the expression for β ′

then becomes

β ′ ≈
(

M + 1

M�x + �e
ν

)
�e

ν (33)

→ (M + 1), for M�x � �e
ν (34)

→ (M + 1)�e
ν

M�x
, for M�x � �e

ν. (35)
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TABLE II. Comparison of Zeff measurements (β ′ obs.) for selected molecules, chosen to correspond to the limiting cases in Table I, with
the predictions of the model (β ′ est.) that are made using the limiting expressions in the table. See text for details. Rates �e

ν , �x , and �a are
given in units of gigahertz. 〈xx〉 notation indicates that the value xx is an estimated average. Superscripts on the �e

ν values indicate the source
of the IR absorption values used in calculating the rates: (a) measured values taken from Ref. [18] and (b) calculated values in the B3LYP
ultrafine density functional theory, using a 6-31G* basis set, obtained from Ref. [19]. The absence of a predicted value of β ′ for case 2b is
discussed in the text.

Case Type Limit Example �e
ν �x �a β ′ est. β ′ obs.

1a �e
ν � �a CH3Cl / CCl str 100a n.a. 0.21 1.0 1.0

Isolated VFR
1b �e

ν < �a C2H2Cl2 / CCl rock 0.06b n.a. 0.3 0.2 n.a.

2a (M + 1)γ > �x CDCl3 / CD str 0.6a 〈1,000〉 0.3 0.001 0 (0.1)
Suppression

2b �x > (M + 1)γ CHCl3 / CH str 1.8a 〈1,900〉 0.3 n.a. 0.4 (0.1)

3a �e
ν � M�x ; �x > �a C3H6O / C=O str 320b 〈4.4〉 0.5 11 7.9 (0.5)

3b Enhancement M�x � �e
ν � �x ; �x > �a C8H18 / CH str 〈310〉b 〈1.5〉 0.5 210 210 (8)

3c M�x � �e
ν ; �a > �x C12H26 / CH str 〈150〉b <0.6 0.6 250 740 (60)

As indicated by Eqs. (34) and (35), the VFR is IVR-
enhanced and grows proportional to the number of gray states
M but then saturates at the value given by Eq. (35) when
M�x � �e

ν . Finally, there is another limit, namely, γ � �e
ν �

�a � �x , but M � 1, so that M�x � �e
ν , for which

β ′ → �e
ν

�a
� 1. (36)

This limit also describes saturation, where all positrons
that attach to the molecule annihilate—the same limit as
described in Eqs. (28) and (29) above. In particular, Zeff =
B(�a/�D)β ′ = �c/�D .

III. COMPARISON WITH SELECTED EXPERIMENTAL
OBSERVATIONS

Given that the simple model presented here aims to
describe a complex process using restrictive assumptions and
a small number of parameters (i.e., assuming only one type of
multimode state |x〉 with one escape rate �x and one mode-
coupling rate γ ), it is unrealistic to expect that systematic
and detailed comparisons with experimental measurements
for resonant Zeff magnitudes can be made. Thus discussed
here are selected examples that approximate the limiting cases
discussed in Sec. II and summarized in Table I. The results of
these comparisons are summarized in Table II.

In these comparisons, the broad background contributions
to the experimental Zeff spectra due to the direct annihilation
Zdir

eff and the SMRA contribution ZSMRA
eff [13] are first sub-

tracted [11], then values of β ′ are obtained from a fit to the
resulting Zeff data of the form

Zfit
eff =

∑
v

β ′
ν

(
Bν�

a

�D

)
, (37)

where Bν is the value of the parameter B at resonance ν. The
energy-resolved Zeff spectra as a function of incident positron
energy are used for these fits, including the energy distribution
of the incident positron beam. For further details regarding the
fitting, including the background subtractions, see Ref. [11].

It should be noted that the parameter β ′ used here differs
from the parameter β in Ref. [11]. The normalization of β ′
explicitly includes the complete dependence upon �e

ν and �a ,

so as to be able to distinguish cases 1a and 1b and recover the
limit that Zeff is vanishingly small when �e

ν � �a .
Presented below are examples selected to match (or at least

best approximate) the limits in Table I. The molecules and
specific resonant modes were also chosen with experimental
considerations in mind, namely, ones where the resonance
is relatively isolated, the relevant multimode states can be
identified, and the coupling of both the primary resonance and
the multimodes to the positron continuum can be estimated
from infrared data. The elastic rates are calculated from the
absolute integrated IR intensities using Eq. (5) [10]. Since this
assumes that the interaction of the incident positron with the
molecule is due solely to dipole coupling, it provides lower
bounds for the elastic rates.

As mentioned above, among the uncertainties in these
comparisons is the assumed magnitude of γ . Generally, theo-
retical calculations of this parameter relevant to the molecules
discussed here are unavailable. Further, there is evidence that
mode coupling and IVR occurs for positron VFR when the
multimode spacing is larger (level density smaller) than in the
case of photoinduced IVR (i.e., which is the major source of γ

data) [4]. This trend is also seen in the examples given below:
IVR from low-order multimodes requires coupling to modes
with spacings up to several millielectronvolts apart, which is
considerably greater than that observed in the photon case.
This difference is not presently understood.

The majority of the data to be presented here for annihilation
rates for molecules resolved as a function of incident positron
energy have been published previously. The experimental ap-
paratus and procedures for these measurements are discussed
in detail elsewhere [4]. To orient the reader, positrons from a
radioactive source and solid neon moderator are cooled in a
Penning-Malmberg buffer-gas trap, then released to produce a
pulsed beam with a parallel energy spread of ∼25 meV. The
component of beam energy perpendicular to the axial magnetic
field is a Maxwellian distribution at the same temperature as the
buffer gas (i.e., 25 meV). To account for this energy, 12 meV is
added to the measured parallel energy to yield the actual, mean
positron energy [4]. Annihilation measurements are made in
a gas cell downstream of the trap. Spectra are measured by
the detection of single 511-keV annihilation γ rays. Further
details are discussed in Ref. [4].

062702-5



DANIELSON, JONES, NATISIN, AND SURKO PHYSICAL REVIEW A 88, 062702 (2013)

1. Isolated VFR

1a. An example of an isolated resonance where �e
ν � �a

is the ν3 C-Cl stretch mode of methyl chloride (CH3Cl,
εb = 19 meV, �a = 0.21 GHz), for which ων = 91 meV and
�e

ν = 100 GHz [4]. Due to the relatively low frequency of this
vibration, no enhancement or decay channels are available to
modify the magnitude of the VFR.

1b. An example of a resonance where �e
ν � �a is the ν10

C-Cl2 rock mode of 1,1-dichloroethylene (1,1-DCE, C2H2Cl2,
εb = 33 meV, �a = 0.3 GHz), with ων = 46 meV and �e

ν =
0.06 GHz. Using Eq. (28), β ′ for this mode is estimated to be
0.2. Unfortunately, the relatively low energy of the resonance
and the proximity of other modes prevents measurement of β ′
for this molecule [20].

2. IVR suppression

2a. Suppression for strong mode coupling corresponds to
the limit �x,γ � �e

ν,�
a; and (M + 1)γ � �x . An example of

this case is the ν1 C-D stretch mode of deuterated chloroform
(CDCl3, εb = 43 meV) at ων = 281 meV [11]. This example
is illustrated in Fig. 2(a), with the region of the suppressed
VFR shown in expanded detail in the inset. This mode is,
to within experimental uncertainty, completely suppressed,
namely, β ′ = 0 ± 0.1. For this case, �e

ν is ∼ 0.6 GHz, which is
comparable to �a = 0.3 GHz. In this molecule, combination
modes that include the C-Cl stretch mode can act as effective
escape channels. Considering that there are ten three-mode
combinations within 8 meV of the entrance channel [11], the
prediction of Eq. (31) is β ′ = 0.001.

2b. Suppression with weaker mode coupling than case 2a
is the limit �x,γ � �e

ν,�
a , as in the case 2a, but with

(M + 1)γ � �x . The smaller value of γ limits the multimode
coupling and hence reduces the suppression. In this case,
β ′ is inversely proportional to γ . While we do not find an
example that fits exactly the case 2b limit, a closely related
example is the ν1 C-H stretch mode in chloroform (CHCl3,
εb = 40 meV) at ων = 376 meV [11], illustrated in Fig. 2(b),
with an expanded view of the region of interest in the inset.
For this mode, �e

ν = 1.8 GHz and β ′ = 0.4 ± 0.1.
Examination of the multimodes in close proximity to mode

ν indicates that the lowest order is four-mode combinations. Of
the 31 modes within 8 meV of the entrance channel, 25 contain
the strongly IR active asymmetric C-Cl stretch mode [11].
If the expression for case 2a were used, this would result in
β ′ = 0.001, in striking disagreement with the observed value.
This leads us to consider case 2b. In this case, the predicted
value of β ′ will depend explicitly on γ . Since no estimate of
γ is available for the positron experiments, the estimate of β ′
is absent in Table II.

However, in this case, the full expression in Eq. (21) and
the measured value of β ′ can be used to estimate γ , yielding
γ = 0.08 GHz. In making this estimate, use of Eq. (21) is
required, due to the fact that γ < �e

ν,�
a , so that the simple

case 2b limit described in Table I is invalid.
The difference in IVR suppression between deuterated

chloroform and chloroform is qualitatively consistent with the
relaxation rates measured previously in weakly interacting
solutes using optical techniques. The characteristic time
constant is approximately a factor of 10 longer for the C-H

FIG. 2. (Color online) Examples of suppressed VFRs for
(a) chloroform-d (CDCl3, εb = 43 meV) and (b) chloroform (CHCl3,
εb = 40 meV): (•) experimental data, (− −) unscaled VFR model,
and (—) model fit. Insets highlight the suppression of (a) the C-D
stretch mode in CDCl3, and (b) the C-H stretch mode in CHCl3. The
spectra shown are background-subtracted to eliminate contributions
due to direct annihilation and SMRA.

stretch mode of chloroform [21] than the C-D stretch mode of
chloroform-d [22].

3. IVR enhancement

Enhancement occurs when the entrance vibration couples
to multimodes that have smaller escape rates.

3a. This case describes the situation in which �e
ν � M�x .

An example is the C=O stretch mode of propanal (C3H6O, εb =
116 meV), where ων = 218 meV and �e

ν = 320 GHz [23]. The
spectrum is illustrated in Fig. 3(a), where the VFR due to the
C=O stretch mode is located at ∼100 meV. Any model that ne-
glects the coupling of the C=O stretch resonance to other vibra-
tions will likely seriously underestimate Zeff near ε ≈ 0.1 eV.
Fitting the resonance yields β ′ = 7.9 ± 0.5. The number of
near-resonant multimodes containing just two vibrations in
a range of ±8 meV about the C=O stretch vibration is 10.
In this case, Eq. (34) yields the estimate β ′ = 11, which is
in good agreement with the observation.

3b. This is again a case of enhancement, but one in which
the ratio �e

ν/M is smaller: M�x � �e
ν � �x . In this case, β ′

scales differently, saturating for M � 1 at β ′ ∼ �e
ν/�x . The

enhancement of the C-H stretch modes in moderate to large
alkanes appear to fit this picture. This is illustrated in Fig. 3(b)
for octane (C8H18, εb = 125 meV) [24], where the resonant
feature associated with the C-H stretch vibrations, observed
at ∼240 meV, is seen to be enhanced significantly above the
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FIG. 3. (Color online) Examples of enhanced VFRs: (a) the C=O
stretch mode in propanal (C3H6O, εb = 115 meV) and (b) the C-H
stretch mode in octane (C8H18, εb = 125 meV): (•) experimental
data, (− −) unscaled VFR model, and (—) model fit. The spectra
shown are background-subtracted to eliminate contributions due to
direct annihilation and SMRA.

magnitude predicted by the VFR model. In octane, nine of
the 18 C-H stretch modes are infrared active, and the average
elastic rate �e

ν for these modes is approximately 310 GHz.
The average escape rate �x of the two- and three-mode
combinations near resonant with the C-H stretch vibrations,
comprised primarily of C-H bend mode combinations, is
approximately 1.5 GHz. Thus the expected enhancement
of β ′ � 202 is in reasonable agreement with the observed
enhancement of ∼210 per IR-active C-H stretch mode.

3c. This third limit of enhancement relates to the situation
in which the |x〉 multimodes have very small ejection rates,
namely �x � �a , but where M�x > �e

ν . This limit likely
describes, for example, annihilation in the largest alkanes
studied to date, where εb is larger than the energies of
most fundamental vibrations, closing off the available escape
channels. Once an entrance VFR couples to lower energy
modes, the positron is effectively trapped on the molecule,
and the rate of annihilation is the capture rate.

A possible example of this is the C-H stretch modes of
dodecane (C12H26, εb = 209 meV), where β ′ ∼ 740 per IR-
active mode [4]. As limited information is available regarding
the vibrational modes of dodecane, we assume the dipole

coupling is similar to that predicted for octane. Taking into
account the differences in binding energy, �e

ν ∼ 150 GHz for
dodecane. Given that all fundamentals less energetic than the
C-H stretch modes cannot individually eject the positron due
to the εb value of 220 meV, �x is likely to be less than �a ,
which is 0.6 GHz, while the number of multimodes M is
very large. The predicted enhancement, β ′ = 233, is only in
qualitative agreement with that observed (i.e., 233 as compared
with 744). It is also not presently clear that M�x > �a , as �x

must involve deexcitation of two or more vibrational modes.

IV. CONCLUDING REMARKS

Annihilation on molecules in the range of incident positron
energies corresponding to those of the vibrational modes
is typically dominated by vibrational Feshbach resonances.
While there is a theory of VFR for isolated modes in simple
molecules, the spectra from most molecules appear to exhibit
departures from this theory, and there is considerable evidence
that these departures involve coupling to other vibrations.

Presented here is a simple model describing the effects
of this IVR on the magnitudes of the VFRs. In the model, the
entrance VFR is coupled to M identical multimode states. Such
multimodes have been observed previously as broad features
in resonant annihilation spectra (i.e., SMRA [13]). Here it is
shown that they can have an important effect on VFR involving
fundamental vibrations; when the coupling is strong, the VFR
amplitude can be modified significantly. Either suppression
or enhancement can result, depending upon the coupling to
the positron continuum of the fundamentals comprising the
multimode states.

Due to the sweeping nature of the approximations made
here, systematic and quantitative comparison with experiment
is unrealistic. While a more realistic model hinges on un-
derstanding in greater detail the intricacies of IVR-related
mode coupling, the present model does provide insight into
the general features of the expected behavior. In particular,
it highlights the key role played by the strength of the
mode-coupling rate γ relative to the elastic escape rates of the
entrance state and multimodes in determining the amplitudes
of VFR. Estimates for the elastic rates �e

ν and �x can be made
using the dipole approximation, and the rate of annihilation
while the positron is on the molecule �a can be estimated to
reasonable accuracy. However, as discussed in Sec. III above,
a key impediment to further progress at present is systematic
knowledge of γ .
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