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In a recent communication �Danielson et al., Appl. Phys. Lett. 90, 081503 �2007��, a nondestructive
technique was described to create finely focused beams of electron-mass, charged particles �i.e.,
electrons or positrons� from single-component plasmas confined in a Penning–Malmberg trap. This
paper amplifies and expands upon those results, providing a more complete study of this method of
beam formation. A simple model for beam extraction is presented, and an expression for a Gaussian
beam profile is derived when the number of extracted beam particles is small. This expression gives
a minimum beam diameter of four Debye lengths �full width to 1 /e� and is verified using electron
plasmas over a broad range of plasma temperatures and densities. Numerical procedures are outlined
to predict the profiles of beams with large numbers of extracted particles. Measured profiles of large
beams are found in fair agreement with these predictions. The extraction of over 50% of a trapped
plasma into a train of nearly identical beams is demonstrated. Applications and extensions of this
technique to create state-of-the-art positron beams are discussed. © 2008 American Institute of
Physics. �DOI: 10.1063/1.2817967�

I. INTRODUCTION

A broad range of science and technology relies upon
specially tailored low-energy charged particle beams. Ex-
amples include bright beams for microscopy and scattering
experiments and cold beams for spectroscopy.1–5 When co-
pious sources of particles are available, sacrificial techniques
can be used to create cold and/or bright beams. However,
when the particular particles are scarce, as is the case with
antimatter, for example, one must frequently resort to more
elaborate, particle-conserving techniques to achieve such
goals. As an example, achieving improved spatial resolution
by passage through a small aperture is perfectly acceptable
for electrons but not for less common particles such as pos-
itrons. This motivated the development of a technique to
focus and rethermalize a positron beam at a material surface
so as to avoid an unacceptably large loss of particles.6 Here,
we describe another technique to create finely focused posi-
tron beams with even greater efficiency. Applications include
the efficient creation of high-quality positron beams for
atomic physics studies and microbeams for material
analysis.1,7,8

A natural approach to creating tailored positron sources
is to accumulate, store, and manipulate these antiparticles in
the form of single-component plasmas, thereby keeping them
away from matter to avoid annihilation. In this paper, this
approach is utilized to demonstrate a nondestructive tech-
nique to extract positron beams, with adjustable beam width
and brightness, from single-component positron plasmas
confined and tailored in a Penning–Malmberg trap.9 For pos-
itron plasmas in this type of trap, infinite storage times are
possible, making it a useful device for this purpose. Experi-
ments with electron plasmas �used for increased data rate�
are described that demonstrate the utility of this technique.
Given that sources of trapped and cooled positrons are
readily available, all of the results described here are ex-
pected to be valid for positrons without further technical

development.2,10,11 For example, trap based positron beams
have already been demonstrated;12,13 however, the positron
density was low enough such that the plasma effects dis-
cussed here were negligible.

Shown in Fig. 1 is a schematic diagram of the experi-
mental arrangement.9 Plasmas are confined radially by a uni-
form several-tesla magnetic field aligned to the axis of a set
of cylindrical electrodes. The end electrodes are biased nega-
tively with respect to the central electrode to confine elec-
trons. Plasmas are cooled by cyclotron radiation. A rotating
electric field, created by the application of phased sine waves
to a four-segment electrode extending over a portion of the
plasma, is used to compress plasmas radially �the so-called
“rotating wall” �RW� technique�.14–16 This provides one of
the two stages of the spatial focusing. The second stage of
focusing, which is the primary subject of this paper, exploits
the fact that the potential energy of the particles is largest
near the plasma center �r=0�. Thus, when the confining po-
tential at one end of the plasma is carefully lowered, a beam
is formed that is composed only of particles escaping from
the region near r=0. A spatially localized beam created in
this manner is illustrated in Fig. 2 for the case in which a
small fraction of the plasma is extracted in a single pulse.

A key result of this paper is that, for sufficiently small
beams �i.e., small number of extracted particles�, the areal
distribution of beam particles deposited on a collector out-
side the plasma is approximately

�b�r� � �b0 exp�− � r

2�D
�2	 , �1�

where r=0 is the position of the plasma center and �D

� �T /n0�1/2 is the Debye length, with T the plasma tempera-
ture and n0 the equilibrium density.9 In this work, the beam
half-width �b is defined as the half-width to 1 /e of the dis-
tribution; i.e., �b�r�. It will be shown that Eq. �1� is valid
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�i.e., �b=2�D� for small beams over a wide range of densities
and temperatures.

A beam such as that described by Eq. �1� and illustrated
in Fig. 2 is attractive for a wide range of applications. The
width, i.e., 2�b, is a simple function of n0 and T. By exploit-
ing the ability to nondestructively set these macroscopic pa-
rameters in situ, the spatial distribution of the beam can be
optimized without particle loss �e.g., without aperturing the
beam�. For example, by increasing n0 through the application
of phased electric fields �the rotating wall technique�, the
width of beams described by Eq. �1� can be decreased as
desired.

This paper expands upon the results presented in a pre-
vious communication,9 providing a more detailed discussion
of the beam-formation process. The range of beam width and
amplitude for which Eq. �1� is valid is explored, as well as
the nature of beams outside of this range. An expression is
developed and tested experimentally for larger beams �i.e.,
larger fractions of the plasma extracted�, as well as a numeri-
cal method for predicting radial profiles for beams of arbi-
trarily large fractions of the plasma.

Also addressed is a problem of paramount significance
for beam applications involving scarce particles: Efficiently
converting a large fraction of particles in a single plasma into
many beams of approximately equal amplitude and width.
The process used here is analogous to repeatedly squeezing
toothpaste from a tube in small increments as needed. More
than half of the plasma can be extracted in this manner with
near 100% efficiency. For beam applications, the remainder
of the plasma can be left in the trap to be used in the next fill
cycle.

This paper is organized as follows. A simple theory of
beam extraction is presented in Sec. II. The experimental
apparatus and procedures for the studies described here are
described in Sec. III. Results for the extraction of single
beams are presented in Sec. IV, and results for multiple
beams extracted from a single plasma are presented in Sec.
V. Applications to positron beams are discussed in Sec. VI.
The paper concludes with a set of summary remarks �Sec.
VII�, including brief comments about areas for future work.

II. THEORETICAL DESCRIPTION
OF BEAM EXTRACTION

In this section, expressions are developed for the areal
distributions of electron beams extracted from a Penning–
Malmberg trap. These results can be applied to positron
beams by changing e to −e in the formulae presented below.

The time dependence of the trapping potentials and
plasma dynamics make a complete description of the beam
extraction process difficult, in principle necessitating a time-
dependent calculation.17 However, the fact that the fastest
particles leave the plasma first means the bulk of the plasma
tends to be affected only by the value of the plasma potential
at the end of the extraction process. Thus, in the description
presented here, all time dependence is neglected, and the
plasma potential is taken to be that at the end of beam ex-
traction. It is shown below that the predictions obtained us-
ing these assumptions are in reasonably good agreement with
the results of experiments over a relatively broad range of
beam and plasma parameters.

This analysis is analogous to previous work on electron
plasmas that used profiles of the extracted charge to measure
the plasma temperature �e.g., Refs. 17–20�. However, in this
paper, a known �measured� plasma temperature is used to
calculate the radial profiles of the extracted beams. It is
shown that for small beams, the areal distribution of the ex-
tracted particles �i.e., the measured charge on a screen or
collector plate external to the trap� is approximately a Gauss-
ian with a half-width; i.e., �b=2�D. For larger beams, an
approximate analytic relationship is derived relating �b to the
number of extracted beam particles Nb.

A long, cylindrical plasma of N0 particles with radius Rp

and length Lp is assumed to be confined in a trap with elec-
trodes of radius RW, with Rp�RW�Lp. The change in length
is neglected as the confinement potential changes little dur-
ing beam extraction �typically, �Lp /Lp�0.05�. It is assumed
that RW�LC, where LC is the length of the confining elec-
trode, so that the confinement potential VC is approximately
independent of radius. Further, it is assumed that the plasma

FIG. 1. Schematic diagram of the extraction of a small beam from an elec-
tron plasma in a Penning–Malmberg trap equipped with a segmented elec-
trode. For small extracted beams, the beam diameter to 1 /e is 2�b=4�D.

FIG. 2. �Color online� Shown are the radial distribution �b�r� for a small
electron beam ��� and the z-integrated density distribution �z�r� of the
initial plasma ���. Also shown is a Gaussian fit �¯� to the beam distribu-
tion, which indicates �b�2.2�D.
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is sufficiently cold and/or dense so that �D�Rp and that the
plasma is well described as having flat ends. The electrodes
surrounding the plasma are grounded, defined as 0 V.
Throughout this work, the dependence of potentials and den-
sities along the magnetic field �i.e., the z direction� are ne-
glected, and azimuthal symmetry of the plasma and extracted
beams is assumed �i.e., no � dependence� unless otherwise
noted. The plasma is characterized by a single temperature T,
taken to be constant during beam extraction, and an initial
equilibrium density distribution n0�r�. The initial plasma po-
tential 	0�r� is uniquely determined by n0�r� through the
Poisson equation.

For a well-confined plasma, −eVC
−e	0�0�+T, where
VC is the confinement potential at the ends of the plasma, and
	0�0� is the plasma potential at r=0. To extract a beam, VC at
one end of the plasma is raised from −100 V to a value VE


	0�0� for a brief extraction time �t. A critical assumption
in the description here is that the time �t is sufficiently long
so that all the particles that can escape have time to do so,
but sufficiently short so that collisions and plasma instabili-
ties do not repopulate the phase space of the exiting particles.
A rough lower limit is �t��b�2Lp /vt, where �b is the
“bounce time” required for an electron with the thermal ve-
locity vt= �T /m�1/2 to travel the distance 2Lp. The upper limit
on �t is discussed later in this paper. For the data presented
here, �t�10 s.

After extraction, the plasma density is reduced to n�r�
=n0�r�−�n�r�, where �n�r� is the change in the initial
plasma density resulting from the extracted beam. This re-
duction in density changes the plasma potential to 	�r�
=	0�r�−�	�r�, where �	�r� satisfies the Poisson equation

�2��	�r�� = 4�e�n�r� . �2�

The escape condition for a particle with a parallel veloc-
ity v� is

1
2mv�

2 − e�	0�r� − �	�r�� � − eVE. �3�

The areal distribution of the extracted beam, i.e., �b�r�
=Lp�n�r�, is the integral over the plasma particles that sat-
isfy Eq. �3�,

�b�r� = 2Lp
vmin�r�

�

f�r,v��dv� = 2Lpn0�r�erfc�vmin�r�
�2vt

� ,

�4�

where f�r ,v�� is assumed to be a Maxwellian velocity distri-
bution at temperature T;

vmin�r� =�−
2e

me
�VE − 	0�r� + �	�r�� �5�

is the smallest velocity of escaping particles from Eq. �3�;
and erfc�x� is the complementary error function with argu-
ment x=vmin /�2vt.

For given values of n0�r� and VE, Eqs. �2� and �4� can be
solved self-consistently using numerical methods to obtain a
prediction for the beam profile �b�r�. As will be discussed in
Sec. IV, this prediction agrees with the measured values of
�b�r� over a relatively wide range of parameters.

In the small-beam limit, a useful expression for �b�r�
can be obtained analytically. When x�2 �i.e., the extracted
particles come only from the tail of the Maxwellian�, erfc�x�
in Eq. �4� can be approximated by21

erfc�x� �
exp�− x2�

��x
. �6�

Assuming an ideal “flat-top” density distribution, i.e.,
n0= �N0 /��Rp�2Lp�, the initial space charge potential in the
plasma is

	0�r� = −
eN0

Lp
�1 −

r2

Rp
2 + 2 ln�RW

Rp
�	 . �7�

Substituting Eqs. �5�–�7� into Eq. �4� yields

�b�r� � �b0 exp�− � r

2�D
�2	exp� e�	�r�

T
	 , �8�

where �D is the Debye length of the unperturbed plasma and

�b0 � A exp� e

T
�VE − 	0�0��	 , �9�

with A �approximately� a constant. For �e�	 /T��1, as is the
case for a small beam, Eq. �8� becomes

�b�r� � �b0 exp�− � r

2�D
�2	 �10�

�i.e., Eq. �1��. As discussed above, this areal density �b�r� is
the radial distribution that would be measured when the ex-
tracted beam impinges on a collector plate.

Equations �9� and �10� are very useful results. They in-
dicate that, in the small-beam limit, the width of the beam
scales with the Debye length and has a value, full width to
1 /e, of 2�b=4�D. The amplitude of the beam can be con-
trolled by VE. However, as more and more charge is ex-
tracted from the plasma, �	�r� eventually reaches values
that cannot be ignored.

In Eq. �8�, although the magnitude of e�	 /T will alter
the amount of extracted charge, it is only the variation in
e�	 /T across the beam profile that is important in determin-
ing the width of the beam. We define the key dimensionless
parameter �=e�	��E� /T−e�	�0� /T, where �E is the effec-
tive radius of the edge of the beam. Since � is determined by
the amount of charge in the beam, we approximate �n�r� as
a flat-top distribution with total charge Nb and radius �b, to
find �	�r���	�0�+ �eNb /Lp��r /�b�2. In this approximation,
the beam parameter � is

� �
e2Nb

TLp
. �11�

Using this result and Eq. �8�, the areal density is

�b�r� � �b0 exp�− � r

2�D
�2

+ �� r

�b
�2	 , �12�

where �b0 contains the radius-independent term arising from
�	�0�. Since �b is defined as the half-width to 1 /e, �b�r
=�b�=�b0e−1, the beam width �b is
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�b � 2�D�1 + ��1/2. �13�

Equations �12� and �13� predict a Gaussian beam, albeit with
�b�2�D, determined by the value of �. Thus, the small-beam
condition, required for the validity of Eq. �10�, can be ex-
pressed as ��1. Since Eq. �11� can also be written as �
��Nb /N0��Rp /2�D�2, this condition places an important
practical constraint on the number of plasma particles that
can be extracted in a small beam; namely, Nb /N0

� �2�D /Rp�2.
Equations �10� and �12� describe well a range of beam

profiles observed in experiment. However, when ��1, non-
Gaussian beam profiles are observed. In this case, numerical
solutions of Eqs. �2� and �4� can be used to describe the
measured profiles, even when Nb
N0.

III. DESCRIPTION OF THE EXPERIMENTS

The Penning–Malmberg trap used for these experiments
is shown schematically in Fig. 3. It consists of a series of
hollow conducting cylindrical electrodes 0.5 m in total
length with radii RW=1.27 cm. A uniform magnetic field B
=4.8 T lies parallel to the electrode axis. For a more com-
plete description of the apparatus �see Ref. 16�.

Plasmas are created using a standard electron gun to fill
a potential well of variable depth �Vfill
 +40 V�. The mag-
netic field provides radial confinement while axial confine-
ment is achieved by the application of confinement voltages
VC=−100 V, to electrodes on either side of the well. The
plasma length Lp is roughly the distance between the confin-
ing electrodes.

In equilibrium, the plasma has a constant density n0 �i.e.,
a flat top radial distribution�, and undergoes E�B rotation at
a frequency set by n0.16,22 The plasma temperature T is set by
the balance between heating sources �due to background
drag and/or rotating wall torques� and cyclotron cooling ��c

=0.16 s�.
Unless otherwise noted, for the plasmas described here,

N0=4�108 electrons, n0=1�109 cm−3, Rp=0.1 cm, Lp

=15 cm, and T=0.05 eV. For these plasmas, the Coulomb
collision time �ee�1 ms �Ref. 22� is rapid compared to �c,
thus ensuring that the plasmas are in states of thermal equi-
librium where T=T� =T�, independent of position in the
plasma. Plasmas exhibit excellent shot-to-shot reproducibil-
ity, with �N0 /N0�1%.

Density and total charge are measured using an
aluminum-coated phosphor screen located adjacent to one of
the ends of the trap �see Fig. 3�. The potential VC on elec-
trodes at this end of the trap is lowered, and exiting electrons

are accelerated into the screen, which is biased at a positive
electrical potential. For low screen potentials �e.g., 25 V�,
the total charge is measured, giving the number of electrons
exiting the trap. When VC is lowered to 0 V; this number is
equivalent to N0. At much higher potentials �e.g., 5 kV�, the
exiting electrons penetrate the aluminum coating and pro-
duce light in the phosphor that is imaged using a CCD cam-
era. When VC is lowered to 0 V, this image is the two-
dimensional �i.e., areal� z-integrated density distribution
�z�r ,�� of the trapped plasma, where n�r ,����z�r ,�� /Lp,
and is independent of z. For a typical situation described here
with rotational symmetry, �z�r ,�� is written as �z�r� with the
� dependence suppressed. Plots of �z�r� below include val-
ues r�0 to represent measurements taken along a major
chord through the circular distribution. Measurements of
�z�r ,�� are shown in Fig. 4, along with the truncated distri-
bution �z�r�.

The plasma temperature is varied using the technique
described in Ref. 18. It consists of repeatedly compressing
and expanding the plasma by changing Lp, thereby heating
the plasma through Coulomb collisions. The temperature is
determined by time-resolved measurement of the number of
electrons escaping from the trap while VC at one end is
slowly lowered.19

The plasma density is varied using the rotating wall
�RW� technique.16,22 Phased sine waves applied to a sectored
electrode are used to generate a rotating electric field with
azimuthal mode number m�=1. These fields produce a
torque on the plasma, thus providing a way to compress or
expand the plasma in a nondestructive manner �see Ref. 16
for details�.

IV. SINGLE-BEAM EXTRACTION

As discussed above, to extract a beam from the trapped
plasma, VC at one end of the plasma is raised from −100 V
to a value VE
	0�0� for a brief extraction time; i.e., �t

�10 s. Using this technique, small beams were extracted

FIG. 3. Schematic diagram of the experimental arrangement.

FIG. 4. �Color online� CCD camera images of �z�r ,�� for a flat-top plasma
�a� before and �b� 10 s after beam extraction. Shown in �c� and �d� are the
corresponding �slice� distributions �z�r�.

012106-4 Weber, Danielson, and Surko Phys. Plasmas 15, 012106 �2008�

Downloaded 07 Apr 2008 to 132.239.69.169. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



over a factor of approximately 40 in both density �0.06
�n0�2.2�1010 cm−3� and temperature �0.05�T�2 eV�.
Figures 5�a� and 5�b� show examples of �b�r� and the corre-
sponding Gaussian fits over a range of T and n0, respectively.
However, due to extra heating during RW compression, not
all temperatures were achieved at all densities. The observed
beam distributions are seen to be in excellent agreement with
the Gaussian form of Eq. �1�. From the Gaussian fits, the
beam half-width �b is found for each extracted beam.

Data for �b over a factor of 30 in �D are shown in Fig. 6,
and compared with the predictions of Eq. �1�. As shown in
Fig. 6�b�, the average of all the data, i.e., ��b� /�D=2.2�0.2,
is in good agreement with the predicted value of 2.0 in Eq.
�1�. The small discrepancy between the data and the predic-
tions of Eq. �1� is currently unexplained.

The data in Fig. 5 show that, at constant T, the width of
an extracted small beam is determined by �D and hence by
the plasma density n0. By varying n0 in a nondestructive
manner with the RW, the width of the extracted beam can be
varied without particle loss. Profiles exemplifying this are
shown in Fig. 7, where n0 is increased so as to narrow the
resulting extracted beam. Here, since �D�1 /�n0, as the den-
sity is increased by a factor of 4, the measured beam width
drops by a factor of 2.

As mentioned above, Eq. �1� is valid only for Nb

�N0�2�D /Rp�2 �i.e., ��1�. If Nb exceeds this limit, the ex-
tracted beams may exhibit radial distributions that are no
longer well characterized by Eq. �1�. Experimentally, as Nb is
increased to intermediate values, i.e., 0.5���1, the beams
remain Gaussian, but now �b�2�D �c.f. Eq. �13��. As Nb is
increased further �i.e., ��1�, the profiles evolve to flat-tops,
with steep edges and flat maxima that are no longer well
described by Eqs. �12� and �13�.

Beam profiles measured over the entire range of Nb from
plasmas with the same density �n0�1�109 cm−3� but dif-
ferent temperatures are shown in Figs. 8�a� and 8�b� along
with the theoretical predictions. For the three smallest
beams, the predictions of Eq. �1� are plotted as dotted lines,
showing excellent agreement with the measured profiles. For
the three larger beams, predictions are obtained by numeri-
cally solving Eqs. �2� and �4� using the measured values for
n0�r�, T, Lp, and Nb. These predictions, shown as solid lines

in Fig. 8, are in reasonable agreement with the measure-
ments, demonstrating that the profile of an arbitrary sized
beam, i.e., all beams such that 0�Nb�N0, can be predicted
numerically. It is important to point out that beams of any
Nb�N0, can be extracted without exciting plasma instabili-
ties during the relatively short extraction time ��t�10 s�.
The stability of the plasma after extraction is discussed later
in this section.

From the data shown in Fig. 8, the beam half-width �b

can be obtained over a broad range in Nb. Figure 9 shows the
results of these measurements together with the predictions
of Eq. �13� and numerical solutions to Eqs. �2� and �4�. The
measured values of �b are in good agreement with the pre-
dictions of Eq. �13� with no fitted parameters. Remarkably,
agreement is seen over the full range of Nb. As mentioned
above, this is not expected for Nb�0.5N0, since the beam
profiles depart from the Gaussian shapes predicted by Eqs.
�12� and �13�. Thus, the agreement with Eq. �13� shown in
Fig. 9 may be fortuitous. The beam width predicted by the
numerical solutions is in similar agreement with the data.
This is expected, as no assumptions on Nb were made in
those calculations.

For all beams investigated, the time evolution of the
number of particles striking the collector plate per unit time
�i.e., the beam current I�t�� generally resembles an asymmet-
ric triangle, as shown in Fig. 10. The time dependence of I�t�
is of interest, for example, in applications where pulses with
a short time duration are required. However, in other appli-

FIG. 6. �Color online� �a� Log-log plot of �b vs �D; �b� linear plot of �b /�D

vs �D. The prediction �b=2�D from Eq. �1� �—� is shown in both �a� and �b�.
The average, i.e., ��b /�D�=2.2�0.2, for all data �¯� is also shown in �b�.

FIG. 7. �Color online� Radial distributions �b�r� ���, for beams extracted
from a plasma �a� before �n0=0.65�1010 cm−3� and �b� after RW compres-
sion �n0=2.2�1010 cm−3�. The initial plasma profiles �z�r� ��� are also
shown. Here, Lp�22 cm and T�0.1 eV.

FIG. 5. �Color online� Small-beam profiles �b�r�: �a� n0�1�109 cm−3 and
T�1 eV ���, 0.2 eV ���, and 0.04 eV ���. �b� T�0.1 eV and n0�1
�109 cm−3 ���, 6.5�109 cm−3 ���, and 1.2�1010 cm−3 ���. Gaussian fits
�¯� are also shown.
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cations �e.g., scattering, discussed below�, the time depen-
dence of the beam pulse is not important. The beam extrac-
tion procedure described here produces beams that exit the
trap with an initial temporal width �t0, roughly equal to the
bounce time of a typical escaping particle �i.e., �t0
�b for
exiting particle with energies 
2T�. For the beams described
here, �t0�1 s. Because these beams contain particles with
a relatively broad spread in velocities, the pulse width will
increase as the beam travels away from the trap. This is
likely the dominant effect responsible for the duration of the
pulse shown in Fig. 10.

The extraction of multiple beams from the same plasma
is an important practical goal �discussed in Sec. V�. This is
most easily accomplished if the plasma returns to equilib-
rium after each extraction. To investigate this issue, the
plasma response following a single-beam extraction was in-
vestigated by recording the areal plasma density �z�r� at dis-
crete time intervals after the extraction of a small beam. Four
such distributions are shown in Fig. 11.

Shortly after the extraction and at t=100 s, the profile
is the initial flat-top profile with a “hole” where the extracted
beam particles were removed. By 250 s, the hole has
moved away from the plasma center, breaking the typical �
symmetry in �b�r ,��. From the time evolution of �b�r ,��
�not shown�, the density hole is seen to rotate around the
center axis of the plasma, as well as drift radially outward.
Similar dynamics are discussed in Ref. 23, in which a similar

density hole was created in an electron plasma and displaced
slightly off-axis to produce an unstable diocotron mode. In
Ref. 23, the density hole is advected around the plasma cen-
ter with a radial location that grows exponentially with time,
analogous to the scenario illustrated in Fig. 11. However,
here there is no initial off-axis displacement of the density
hole, and so the radial displacement does not reach signifi-
cant amplitudes until times �100 s.

Beneficially, this instability does not interfere with the
beam extraction process, which occurs in less than 10 s.
Additionally, the instability for small beams, similar to the
case shown in Fig. 11, decreases the plasma recovery time,
thereby aiding in the extraction of multiple beams. In Fig. 11,
the plasma returns to a flat-top state after only 500 s, much
quicker than it would by viscous transport alone. However,
for large beams �i.e., ��1�, other types of plasma instabili-
ties occur �in times �100 s� that increase the plasma re-
equilibration time, and in some cases, prevent the plasma
from returning to a flat-top equilibrium state.

These results indicate that, for appropriate sized beams,
extraction times as long as 100 s are possible �assuming
collisional effects are negligible� without violating the as-
sumptions of Sec. II. This is verified in Fig. 12, where Nb is
plotted for beams extracted on two times scales: The typical
10 s extraction, and a longer extraction over 
200 s. The

FIG. 8. �Color online� Profiles �b�r� of extracted
beams: �a� T�1.0 eV, ��0.1,0.3,0.5,1.0,1.9,2.8; �b�
T�0.2 eV, ��0.1,0.3,0.5,2.2,5.2,11. In both �a� and
�b�, the three smallest beams are fit �¯� to Eq. �1�, and
the three largest beams are fit �—� to numerical solu-
tions to Eqs. �2� and �4�. The initial plasma profile �z�r�
is shown ���, as is the fit �- - -� used in the numerical
solutions.

FIG. 9. �Color online� �a� Beam-width parameter �b plotted vs Nb /N0 for
T�1.0 eV ��� and 0.2 eV ���. Predictions �—� from Eq. �13� with no fitted
parameters, and �¯� numerical solutions to Eqs. �2� and �4�. Arrows corre-
spond to beams with �=1. �b� Data from �a� plotted as ��b /2�D�2 vs �,
showing all data lies on a single curve �—� given by Eq. �13�.

FIG. 10. �Color online� The extracted beam current I�t� �—� for a typical
beam is shown together with the time dependence of the confinement po-
tential VC�t� �- - -�. The value of VE �¯� for this extraction is also shown. In
this example, Lp�15 cm and �b�3 s.
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long time scale extraction is performed by a linear ramp of
VC from −100 V→0 V at a rate of 0.015 V /s. In this
“slow” extraction, unlike the normal beam extraction, both
VC �equivalent to VE� and Nb are measured continuously as a
function of time. As seen in Fig. 12, the two methods extract
identical size beams when VC=VE. This, in turn, provides
evidence that no significant radial transport or collisions oc-
cur during the longer extraction time. The smooth increase in
Nb over the first 100 s of the slow ramp �indicated by the
arrow in Fig. 12�, further illustrates the stability of the
plasma on these time scales. As shown in Fig. 12, the small
Nb part of the slow extraction data can be fit to an exponen-
tial �i.e., Eq. �9�� and is used to measure plasma temperatures
in the present work.18,19

V. EXTRACTION OF MULTIPLE BEAMS

For practical applications, it is desirable to make effi-
cient use of the plasma particles by extracting multiple
beams before refilling the trap. One way to do this is to
extract a beam at VE; wait for the plasma to reach a new
equilibrium; then extract another beam at VE+�VE, where
�VE��	0�0�, the difference in equilibrium plasma poten-
tials before and after extraction. The adjustment in VE after
each extraction is necessary to maintain constant Nb with
changing 	0�0� �cf. Eq. �9��. Although �VE is approximated
above, the exact value must be determined empirically. For
the multiple beam extractions described below, it was deter-
mined that, for constant amplitude pulses, �VE remained in-
variant throughout the extraction process.

In general, as particles from the plasma are depleted, the
plasma density drops, resulting in an increased Debye length.
Thus, the later beams would have a larger beam width than
the first beams. To counter this effect, we utilize the RW
technique �described in Sec. III� to maintain the plasma at a
constant density.

Shown in Figs. 13–15 is an example in which about 50%
of the plasma was removed by extracting a sequence of 20
beams, while maintaining fixed n0 with RW compression. In
this case, n0 is held constant while Rp is allowed to vary with
each extraction. Actually, n0 does vary, but only slightly, due
to the small amount of “slip” �i.e., fRW− fE� fRW� that occurs
during RW compression.18

The total collected charge for each extracted beam is
shown in Fig. 13. The time interval between beam extrac-
tions was set to 200 ms in order to allow full RW compres-
sion after each extraction. Here, this process yielded 20
constant-amplitude beams �i.e., �Nb /Nb�0.05�, with Nb

�1�107 per pulse.
In Fig. 14, the z-integrated plasma density is shown be-

fore any beam extraction, and after extraction of the 20
beams at fixed n0�2�109 cm−3 and T�0.3 eV �the density
and temperature change by less than 10% over the total ex-
traction� in Fig. 13. Here the RW plasma compression is
done at a constant frequency fRW=1.05 MHz, and amplitude
VRW=1.2 V. For this case, both n0 and T �and hence �D� are
approximately constant during the multiple-beam extraction
process, while the total number of particles in the plasma
drops from N0i�4.6�108 to N0f�2.4�108, corresponding
to ejecting 48% of the plasma.

Because the Debye length is the same for each beam, we
expect the beam widths to also be the same. This is verified
in Fig. 15, where the profiles for the first, tenth, and twenti-
eth extracted beams from Fig. 13 are shown. Here, the mea-
sured width �2�b�0.4 mm� remains approximately constant
for all beams. Using the measured values for n0, T, Lp, and
N, we find �D�0.09 mm and ��0.2. Plugging these values
into Eq. �12�, we would expect a beam width �0.39 mm, in
excellent agreement with the measurements.

It should be noted that a previous experiment with pos-
itrons in a Penning–Malmberg trap demonstrated multiple
beams from a single trapped plasma.12,13 However, the pos-
itron density was low enough �i.e., �D /Rp�1� that no
plasma effects �e.g., focusing� were observed. Further, the

FIG. 11. �Color online� Profiles �z�r� are shown at four times after the
extraction of a small beam. For the data at 250 s, the major chord along
which �z�r� is measured is chosen to pass through the center of the off-axis
hole. Also shown �¯� is �z�r� before the extraction.

FIG. 12. �Color online� Fast and slow beam extraction procedures are com-
pared: ln�Nb� ��� for fast �
10 s� extractions at different values of VE;
ln�Nb� �—� vs VC, as measured continuously while VC is ramped slowly
from −100 V→0 V at a rate of 0.015 V /s. Also shown �¯� is the predic-
tion in Eq. �9� with T=0.05 eV.
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time between pulses was much shorter than the re-
equilibration time, and thus the plasma distribution was
likely non-Maxwellian for all but the first couple of beams.
One effect of this was that a nonconstant �VE was necessary
in order to produce equal-strength beams.13 In contrast, the
experiments shown here �i.e., Figs. 13–15� demonstrate how
a suitable plasma �i.e., �D /Rp�1� can be used to extract
more than half the plasma into a series of identical beams
using a constant �VE.

VI. APPLICATION TO LOW-ENERGY
POSITRON BEAMS

A. Magnetically guided beams

One application of the techniques described here is to
create cold, bright, low-energy positron beams. Uses include
positron microscopy for materials studies,1 positron spectros-
copy of atoms and molecules to study positron-matter
interactions,24 and the creation of dense positron plasmas at
material surfaces to create positronium molecules �Ps2� and
Bose-condensed positronium.25

One measure of the quality of such beams is the invari-
ant emittance ��, which can be approximated as

�� � �b��E��1/2 + ��b
2/2rc���E��1/2, �14�

where �E� is the perpendicular energy spread and rc the
particle gyroradius.26,27 The two terms on the right-hand side
of Eq. �14� correspond, respectively, to the emittance in the
electrostatic and strongly magnetized beam limits. In particu-
lar, the presence of a magnetic field is deleterious, since �� in
this regime is larger by a factor �b /2rc
1. Small values of
�� correspond to high-quality beams with small spatial extent
and angular spread. In the small-beam limit in which �b

�2�D,

�� � 2��E��1/2�D + 2��E��1/2��D
2 /rc�

� gTn−1/2 + hT3/2Bn−1, �15�

where g and h are constants. Thus, the emittance can be
reduced by reducing T and increasing n, while the presence
of the magnetic field always increases ��, thereby degrading
beam quality. Compression using the RW technique can be
used very effectively to increase n, thereby decreasing ��.

In the case of positron scattering experiments, a high
premium is placed on beams with small values of energy
spread �e.g., Ref. 24�. An interesting feature of the beam
extraction process described here is that the perturbation of
the space charge potential due to the extraction of beam par-
ticles acts to retard the extraction. While this has the delete-
rious consequence of broadening the spatial profile of the
beam, it is also beneficial in that it tends to maintain a nar-
row parallel energy spread, namely, �E� �T for extracted
beam pulses somewhat beyond the small-beam limit. Al-
though this will also increase the temporal width of the beam
pulse �as discussed in Sec. IV�, the scattering experiments
will not be affected adversely.

B. Electrostatic beams

Thus far, we have discussed magnetically guided beams,
since they are naturally compatible with Penning–Malmberg
traps. However, electrostatically guided beams are advanta-
geous for a number of applications. For example, they pro-
vide increased sensitivity in studying angular scattering from

FIG. 13. Nb for 20 electron beams extracted consecutively with �Nb�
= �0.1�0.005��108, with ��0.2.

FIG. 14. �Color online� Plasma profiles �z�r� before �- - -� and after �—� the
extraction of 20 beams of Nb�0.1�108. RW compression holds the plasma
parameters �T�0.3 eV, n0�2�109 cm−3� approximately constant, while
the total number drops from N0i�4.6�108 to N0f�2.4�108. Here, Lp

�21 cm.

FIG. 15. �Color online� Profiles �b�r� for the first ���, tenth ���, and twen-
tieth ��� extracted beams in Fig. 13. Nb�0.1�108 for all beams. The beam
width �2�b�0.4 mm� remains approximately constant, since here �D is in-
variant during extraction. Gaussian fits �¯� are also shown.
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atomic and molecular targets,24,28 including the longer-term
possibility of developing a positron reaction microscope.29

One can also use electrostatic techniques for additional beam
focusing6,27 for applications such as Ps2 and Ps–Bose–
Einstein-condensate formation.30

Conversion to an electrostatic beam can be done by first
transporting the beam adiabatically to a low-field region,
then extracting the beam from the field nonadiabatically. The
extraction can be accomplished by passing the beam through
an aperture, grid, or spokelike structure made of a material
with a large magnetic permeability, as long as it is done in a
time less than 
1 /�c �i.e., � a gyroperiod in the field from
which the beam is extracted�.31,32

Consider, for example, a beam of initial width �b=2�D

that has been extracted �stage I� from a 30 K �i.e., 3 meV�
plasma with density n0=3�1010 cm−3 in a field of B
=4.8 T. The corresponding values of �b and �� are �b=5
�10−4 cm and ��=3�10−3 cm eV1/2. The beam is then
transported adiabatically to a lower field region at B=5
�10−4 T �stage II�, and finally extracted nonadiabatically
from the field �stage III� through an aperture of diameter �b

that is made from material with a high magnetic permeabil-
ity. During these processes, �� remains constant. Thus, the
final perpendicular energy spread is given by the first term in
Eq. �15� �i.e., B=0�, which yields �E�
3 meV. Beam pa-
rameters in the three stages of this process are summarized in
Table I.

For the example shown in Table I, the resulting electro-
static beam has parallel and perpendicular energy spreads
�6 meV and a diameter D=0.1 cm. The resulting beam
would be superb compared to the best electrostatic positron
beams currently in use for atomic physics studies,24 and
would admit to further electrostatic brightness enhancement.6

According to Eq. �13�, a beam of this width would be limited
in amplitude to Nb�4000 per pulse.

The final value of �E� could be further reduced using a
grid or spokelike structure of high permeability material
rather than an aperture for the extraction II→ III. In this case,
�E� can be estimated by computing the transverse velocity
increase �v� that a particle experiences as it moves through
the diverging magnetic field at the termination. In CGS units,
for a rectangular grid with openings of dimensions d�b,
�v�
�cd,31 resulting in a perpendicular energy spread, i.e.,
�E�
�m /2���cd�2, where �c is the cyclotron frequency.
Comparison with Eq. �14� indicates that �E� is further re-
duced from the aperture-extraction example by a factor of
�d /�b�2.

C. Large-amplitude and fast pulses

For many applications, one would also like to have large
numbers of positrons per pulse �e.g., creation of Ps2 and
Bose-condensed Ps�. Unfortunately, off-the-centerline ex-
traction is not well suited to such tasks. In the small-beam
limit, the fraction of extracted particles Nb /N0� �2�D /Rp�2

�1. Rotating wall compression can aid in producing bright
pulses with larger numbers of positrons, but off-the-

centerline extraction cannot. The latter technique is useful in
cases where one wants a train of modest-sized, but cold,
bright pulses of particles.

For other applications, such as positron lifetime spec-
troscopy, one would like short bursts of positrons �e.g., �t
�200 ps�.33 As discussed above, the techniques described
here to make cold beams are not well suited to such appli-
cations, since the duration of the pulse is limited by the ther-
mal velocities of the particles to times 
1 s for plasmas
with temperatures �1 eV.

VII. CONCLUDING REMARKS

In this paper, we have described new procedures to ex-
tract beams with small transverse spatial widths from single-
component plasmas. A simple model is presented that pre-
dicts the beam profiles. The results are in very good
agreement for small beams and in fair-to-good agreement for
large beam profiles. Small beams are accurately described by
Gaussian radial profiles with a 1 /e half-width of 2�D, as
predicted by approximations to the model. Increases in beam
width with increasing Nb are predicted analytically by ap-
proximations to the model. For larger beams, profiles are
predicted from numerical solutions to the simple model for
beam extraction.

The ability to control beam widths was demonstrated
using rotating electric fields to compress the plasma during
the beam extraction process. Furthermore, the ability to con-
vert more than half of the plasma into a train of tailored
beam pulses was demonstrated with near 100% efficiency.
During this multiple beam extraction, active plasma com-
pression was used to achieve identical width beams, with
amplitudes constant to within �Nb /Nb�0.05.

The model used here to describe the extracted beams
makes two rather sweeping assumptions. One is that there is
no scattering of the particles during the time of extraction.
The second assumption is that the radial profile of the plasma
potential used to calculate the beam profile is only that at the
end of the extraction process. Essentially all dynamics �i.e.,
both of the beam particles and the plasma parameters� during
the extraction process are neglected. While the resulting
simple model is in reasonable-to-good agreement with the
results of experiments over a relatively broad range of
plasma parameters, there are important ranges of parameters
for which more detailed �time-dependent� calculations would
be beneficial. One example is calculation of radial beam pro-
files for ��2 �cf. Figs. 8�. Also of interest is the regime of
high densities and low temperatures in which the collisional

TABLE I. Parameters of a beam extracted from a high-field trap �I�, then
transported to a low field �II�, and finally extracted from the field to create
an electrostatic beam �III�.

Stage I II III

B �T� 4.8 5�10−4 0

�E� �meV� �3 6 6

�E� �meV� 3 3�10−4 3

�b �cm� 5�10−4 5�10−2 5�10−2
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mean free path of the extracted particles is smaller than the
plasma length.
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