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The low-order modes of spheroidal, pure electron plasmas have been studied experimentally, both 
in a cylindrical eiectrode structure and in a quadrupole trap. Comparison is made between 
measurements of mode frequencies, recent analytical theories, and numerical simulations. Effects 
considered include trap anharmonicity, image charges, and temperature. Quantitative agreement is 
obtained between the predictions and these measurements for spheroidal plasmas in the quadrupole 
trap. In many experiments on single-component plasmas, including antimatter plasmas, the standard 
diagnostic techniques used to measure the density and temperature are not appropriate. A new 
method is presented for determining the size, shape, average density, and temperature of a plasma 
confined in a Penning trap from measurements of the mode frequencies. 0 1995 American Institute 
of Physics. 

I. INTRODUCTION 

Single-component plasmas have been extensively stud- 
ied, both experimentally and theoretically.‘72 Most experi- 
mental studies are conducted in cylindrically symmetric Pen- 
ning traps, in which radial confinement is provided by a 
magnetic field and axial confinement is provided by an ex- 
ternally imposed electrostatic potential well. Pure electron 
plasmas have typically been studied in traps with long cylin- 
drical electrodes3 to increase the total number of trapped 
particles and to reduce the importance of end effects, which 
are difficult to treat theoretically. On the other hand, ion plas- 
mas and small numbers of ions that are not in a plasma state 
are usually studied in short traps with precision hyperboloi- 
dal electrodes.4 

Experiments with pure ion plasmas in precision quadru- 
pole traps have begun to combine these two different fields 
of Penning trap research.4 Although the number of particles 
trapped in these experiments is still small (2 lo’), laser cool- 
ing lowers their temperature sufficiently to make them plas- 
mas. In some experiments,4 the temperature is so low (T 
< 10 mK) that the plasmas become strongly coupled, 
forming concentric shells5 Because a quadrupole trap is 
used, the plasmas are spheroidal,6 rather than cylindrical. Re- 
markably, an exact theory exists’ for the normal modes of 
these plasmas, in the limit of very low temperatures. Some of 
the predicted modes have been observed at frequencies in 
‘very good agreement with the theory.*” 

The experiments described in this paper were performed 
with large numbers of particles (lo’- 109) in an approximate 
quadrupole trap. Single-component plasmas of various spe- 
cies have been studied in the same trap, including pure elec- 
tron, pure ion, and pure positron plasmas. In an earlier paper, 
we presented results for modes in pure electron plasmas.” In 
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this paper we describe the experiments in more detail, and 
also present the first data on collective plasma modes in a 
pure positron plasma. These experiments have led to an im- 
proved understanding of the temperature and shape depen- 
dence of the plasma mode frequencies in these plasmas, with 
the prospect of their application as a diagnostic in a variety 
of experiments.lO*‘t Other experiments with positron plasmas 
and pure ion plasmas are discussed elsewhere.‘2*‘3 

The trap used in the experiments described here was 
designed to accumulate and store positrons.*4“5 There are a 
variety of applications for trapped positrons including 
plasma physics applications, such’ as the study of electron- 
positron plasmas,‘6-20 and tokamak transport experiments2’ 
Other applications include the search for resonant states in 
electron-positron scattering experiments,22 positron annihi- 
lation studies,23-27 the production of low-emittance positron 
beams,2s and the formation of antihydrogen. 

The plasma mode studies reported here were begun with 
the intention of developing a nonperturbative diagnostic of 
the properties of a positron plasma, for which neither the 
probes used for neutral plasmas nor the destructive diagnos- 
tics used for electron plasmas are desirable. The same tech- 
niques could also be used to monitor antiproton plasmas30*31 
or as an adjunct to the usual techniques for electron plasma 
experiments. The properties of positron plasmas are the same 
as those of electron plasmas, except that positron confine- 
ment is dominated by annihilation on neutral gas molecules 
in our trap. Because electrons are more convenient to work 
with, positrons were not used for most of the mode studies 
described here. 

The plasmas are formed by trapping particles from a 
weak beam, using collisions with a neutral buffer gas to re- 
move the required energy. As a result, the plasmas cool to 
room temperature, but they may be heated to about 0.5 eV by 
the application of RF noise. Using standard techniques, the 
temperature and the radial density profile can be measured. 
Several of the normal modes predicted by Dubin are ob- 
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FIG. 1. Cross section of a quadrupole Penning trap. The trap is cylindrically 
symmetric about the z axis. 

served, although not always at exactly the frequencies pre- 
dicted by the cold fluid theory. The discrepancies are mostly 
the result of the plasma temperature, and the data are in 
excellent agreement with numerical simulations of the 
plasmas.” 

This paper is organized in the following manner. In Sec. 
II we describe the theory of single-component plasmas in 
quadrupole traps. The experimental equipment and tech- 
niques used are described in Sec. III. The results obtained 
with electron plasmas are presented in Sec. IV and compared 
with the cold fluid theory and with numerical simulations. 
The use of these results as diagnostics is also described, and 
data obtained with positron plasmas are presented. Section V, 
whichconcludes the paper, is a brief summary of the present 
state of knowledge in this area. 

II. THEORY 

A. Plasma equilibrium 

The electrodes of an ideal quadrupole Penning trap, 
shown in Fig. 1, are hyperboloids of revolution with their 
axis of symmetry (defined as the z axis) aligned with a uni- 
form magnetic field, B, and sharing the asymptotes p 
=i-VTZ, where p = ST-2 x +y is the cylindrical radius coor- 
dinate. Various choices for the hyperboloids are possible. 
The standard one is the asymptotically symmetric Penning 
trap, in which the electrode surfaces satisfy the equation 

$-. $pp”= tz;. (1) 
The minimum distance from the trap center to either of the 
two “endcap” electrodes (described by the plus sign in the 
above equation) is thus zo, and the distance to the “ring” 
electrode (described by the minus sign) is p. = dzo . If the 
endcaps and the ring are set to potentials V and - V, respec- 
tively, the electric potential has the form 

@(P,z)=; z2- ; p* . 
( i 

In the absence of the electric field of the trap, a charged 
particle would move freely in the z direction, while execut- 
ing circular motions in x and y at the cyclotron frequency, 
f12,=qBlmc, where c is the speed of light, and q and m are 
the charge and mass of the particle, respectively. A charged 
particle confined in the trap electric field follows a more 
complicated path that is the.superposition of three indepen- 
dent harmonic oscillations. In the z direction, it oscillates 
about the origin at a frequency, w, = &$CG$ Its motion 
in the x and y coordinates consists of a rapid circular motion 
downshifted from the cyclotron frequency: 

accompanied by a slower circular drift around the z axis at 
the magnetron frequency, 

(3) 

These two frequencies are the roots, a, of the equation 

w;=2Q(&-a). (4) 

When nf % RM and the electric field varies slowly over the 
radius of the cyclotron orbits, conditions that are well satis- 
fied in most electron plasma experiments, the magnetron mo- 
tion may be thought of as the EXB drift of the guiding 
center of the particle. The amplitudes and phases of the three 
independent oscillations may be determined from the initial 
conditions. Typically, the amplitudes are of more interest 
than the phases, since they are constants of the motion. In 
particular, the radius of the cyclotron motion is 

PC= 
( 

g+pyC$+i&# 1’2 

1 np-2,; ’ 

where p is the radial position and b and p$ are the radial and 
azimuthal components of the particle velocity. The radius, 
pd, of the magnetron drift motion is found from the same 
formula by replacing Ck, with Szf . 

The thermal equilibrium of a large number of particles 
confined in a cylindrical Penning trap at a low temperature is 
a uniform-density cylindrical plasma, rotating rigidly.32 The 
rotation frequency, w, , may be either of the two roots of the 
equation 

w2=2w (!a --w ) p i-c I.9 (5) 

where o,=(4rq”nlm)1’2 is the plasma frequency and n is 
the number density of the plasma. Surprisingly, this equation 
also applies to the low-temperature equilibria of plasmas in 
quadrupole traps, which are uniform-density, rigidly rotating 
spheroids.6 The spheroids are biaxial ellipsoids with rota- 
tional symmetry about the z axis, so they are completely 
specified by their length, L, along the z axis and their radius, 
rp , at z = 0. The ratio of length to diameter, 

Phys. Plasmas, Vol. 2, No. 8, August 1995 Tinkle, Greaves, and Surko 2881 

Downloaded 21 Jun 2001 to 132.239.73.116. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



L 

a=rLTp. 
is referred to as the aspect ratio. In equilibrium, cr is related 
to the plasma density by the equation33 

2 
@;=d A3(“)’ 

where 

.43(a)= 

2Q$x(a2- 1)-“2] 
ff*-1 > 

and Qy is a Legendre function of the second kind. As shown 
in Fig. 2, op is a monotonically increasing function of @that 
approaches its minimum value, op= w, , as a-+0. This im- 
plies that u,>fiM, as may be seen from a comparison of Eq. 
(4) and Es. (5). 

B. Plasma oscillations 

The dispersion relation for the normal modes of these 
non-neutral plasma spheroids has been derived in the cold 
fluid limit by Dubin, using spheroidal coordinates and a 
clever frequency-dependent coordinate transformation to 
match solutions for the potential perturbation, ?B, at the 
plasma surface. This is the first analytical theory to treat the 
boundary conditions of a finite plasma exactly. 

To understand the structure of the normal modes de- 
scribed by the theory requires some discussion of the coor- 
dinate systems used. Outside the plasma, spheroidal coordi- 
nates (5, ,t2,4) are used. The azimuthal angle, c$, is the same 
as in cylindrical coordinates, and & and 6 are related to 
cylindrical coordinates by the equations 

p=[(s:-d2)u-.5;,l’“, 

z=&52. 

With the parameter d chosen as d2 = (L/2)2 - ri, the plasma 
surface is described by 5, = L/2. The solutions to Laplace’s 
equation can be expanded in terms of the associated Leg- 
endre functions as 

where the AI,,n are constant coefficients. 
Inside the plasma, a different set of spheroidal coordi- 

nates, (5, , z2, 4), is used in which the relation to the z coor- 
dinate is altered: 

p=[@-d2)( 1-&]““, 

z=(EglE1)1’2&&~ 

where 

J2= ; 2p. ( i 3 
(8) 

The quantities el and e3 are elements of the dielectric tensor 
appropriate to a single-component plasma in a uniform mag- 
netic field, El -ie2 0 

E= ie2 El 0 , [ 1 (9) 
0 0 63 

and are related to the plasma parameters as follows: 

El = I- w;/(w*-g), 

ez=q+tJ~/w(w2-fl~), 

E3= 1 - w;/02, 

where 43, = a,- 2 w, . In this coordinate system, the surface 
of the plasma is described by &=(E~/E~)“*L/~, the Pois- 
son’s equation is transformed into Laplace’s equation. As a 
result, the perturbed potential inside the plasma may be writ- 
ten as 

cP-P~,~(~~ ,z2,q5,t) = B,,,Pr(l, /J)P;“( ~a)ei(mqb-of), 

Matchmg a@:,, and &I$‘, at the surface leads to the disper- 
sion relation 

I’* PT(kI) 
pl;‘o 

1’2 P;f(k,)Qlf’(k2) 

Plli’(WQ;t(k*) ’ 

where k,=a/(cr2--e3/E,) i’2, kz=a(ar2- l)-“2, and the 
primes indicate derivatives taken with respect to the entire 
argument. 

For strongly magnetized plasmas, in which a,% wp and 
sZ,+ oZ , the dispersion relation for low-frequency eigen- 
modes with azimuthal symmetry (i.e., m=O) reduces to 

“2 Pl(k,)Q;‘(k2) 

P;(WQ;W ’ 
(11) 

and k, simplifies to k, = a( a2 - 1 -I- ~;/a?) - I’*. When 
scaled by oZ , the normal mode frequencies are functions of 
(x only, as shown in Fig. 2 for several of the lowest-order 
modes. Sketches of fluid motions during one phase of the 
oscillation are included in Fig. 2 to indicate the spatial struc- 
ture of the modes. The modes shown in this figure with no 
radial structure are the Trivelpiece-Gould modes34 for sphe- 
roidal plasmas. The Appendix includes a discussion of the 
solution of Eq. (11). 

Another set of modes of interest are the purely azimuthal 
modes, for which I = Irnl. In this paper we deal only with 
axial modes of electron and pure positron plasmas. We have 
discovered that the azimuthal modes of pure ion plasmas can 
be investigated in a novel steady-state mode of operation of 
our trap, and the results are to be published in a separate 
paper.13 However, both families of modes can be investigated 
in either pure electron or pure ion plasmas. 
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FIG. 2. Cold fluid theory for axial modiS6f highly magnetized spheroidal 
plasmas: frequency as a function of aspect ratio for several low-order 
modes, scaled by o;.:The dashed line is the plasma frequency. ‘; ; 

Because the plasmas studied are not always small in ei- 
ther total,charge or spatial scale, the effects of the charges 
drawn onto the electrodes to maintain constant potentials in 
the presence of the plasma (referred to as the plasma “image 
charge”) are not always negligible. The attractive interaction 
between the plasma and its image charge modifies the effec- 
tive trap potential from that of a perfect quadrupole, making 
the equilibrium nonspheroidal and complicating the predic- 
tion of mode frequencies. For a small plasma, however, the 
dominant effect of the image charge is to change the strength 
of the quadrupole potential to an extent proportional to the 
plasma charge, ~4th. a constant of proportionality dependent 
on the geometry of the trap electrodes. A-number of papers 
have treated the problem of ima e charge effects in quadratic 
wells. Wineland and Dehmelt3 $ modeled image charge ef- 
fects by an infinite series of fictitious charges placed along 
the z axis. A more comprehensive study by Brown et a1.38 
includes cavity shifts in the cyclotron motions. Van Dyck 
et a1.39 modeled image charges -by replacing the trap with a 
grounded conducting shell. 

._ ..a= .y.: ‘,; 

C. Thermal effects .s., 

The cold fluid equilibrium described above is valid if the 
Debye shielding length, Xn=(kJ/4rrng”)“2, is, much 
smaller than the size of the plasma, i.e., h,+L, rp . Here T is 
the plasma temperature and kn is the Boltzmann constant.. In 
this case, the thermal equilibrium’deviates~ from a uniform- 
density spheroid only at the edge, where the density falls to 
zero in a distance of a”few Debye lengths. The plasma pres- 
sure causes the equilibrium, spheroid to elongate slightly 
along the magnetic field. In the opposite limit,~ A$L, rp, the 
particle interactions are negligible compared to their thermal 
energy and the trap potential, and their distribution in i is a 
Gaussian, with (z”) =kBTlmof, =. 

The cold fluid mode,theory requires X,BL, rP’,*but, in 

An approximate treatment of image charge effects pro- 
ceeds in the following way.35 The electric potential produced 
near the electrodes by a small plasma (i.e., L/2, rp4zo) of 
total charge Q in the center of the trap should be well ap- 
proximated by the first terms in its multipole expansion, and 
dominated by the monopole term, which has the simple form 
a,,,= Qlr. The surface ch-arge distribution drawn onto the 
electrodes to maintain their equipotentials must produce a 
potential -Q/r at the electrode surface. If the electrodes 
formed a spherical shell, this would be accoml$ished by a 
charge distribution that itself had only a monopole term. For 
more complex electrodes, the potential produced inside the 
trap by the.’ imzge. charge may be expanded as 

@ICY, i)= g-[s; Bl & kqcos e>, 
- 0 -- 

._ ..- 

addition, Xn must be much smaller than the wavelength, X, of 
the mode being considered. If this is not the case, the fre- 
quency of compressional plasma modes would be expected 
to increase due to the plasma pressure, and:,Landau damping 
will become important. As a result, even t’cool”. plasmas will 
show only a finite number of modes, and the most robust will 
be the lowest-order modes, which have the longest. wave- 
lengths..~[t.j,s possible to estimate the effects of pl,asma tem- 
perature on the mode frequencies to first order in ‘?‘,“3*3: as 
described in Sec. IV B 3.* A warm fluid theory in- which .a 
pressure term is ‘addedto the fluid equation of motion is quite 
successful for low enough T, but is confounded by the oc- 
currence of nonphysical acoustic modes for higher tem- 
peratures.36 

where azimuthal symmetry has been assumed. The unitless 
coefficients Bl are determined by the requirement 
@l(r(6),8)v=-Q/r( 69, where r(6) is the equation of the 
electrode surfaces. Near the center of the trap, only the 
lowest-order terms are important. The monopole term (I = 0) 
represents. an unimportant shift in the zero of the .potential. 
For electrodes that are symmetric about z = 0, the coeffi- 
cients vanish for odd values of I, so there is no dipole term. 
The quadrupole term (1= 2) changes the trap quadrupole 
field from one described by the frequency. wZ to one de- 
scribed by 6~: , where<. 

2aQ ’ (~t$,)~=w;- s B,. 

Three of the global modes in the cold fluid theory are not The spheroidal equilibrium and normal mode frequencies 
truly plasma modes, but merely motions of the plasma center will be altered accordingly. 

of mass. These modes, namely the axial bounce, cyclotron, 
and magnetron modes, should have frequencies independent 
of the plasma size, shape, and temperature in a perfect quad- 
rupole trap, as long as image charges may be neglected. 

D. Image chkges 
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For the special case of the center-of-mass mode, the as- 
sumption that odd-l coefficients vanish is not valid, because 
the plasma has a time-varying dipole moment. A treatment 
similar to that just described for the quadrupole image charge 
field induced by the monopole moment of the plasma may be 
used to calculate B, and higher coefficients. When the force 
on the plasma due to this time-dependent induced dipole is 
calculated, it is found to have the same effect on the center- 
of-mass motion as is produced by the static quadrupole field 
induced by the plasma monopole moment, resulting in har- 
monic oscillation at a frequency We,.,.,, given by 

&,=+~(B,+B2). 
m zo 

(12) 

Plasmas that are not much smaller than the trap may still 
have onIy minor effects from image charge, but the coeffi- 
cients (possibly even their sign) will depend on the plasma 
length and radius, as well as the total charge. A numerical 
Poisson solution would be required to determine the image 
charge field for a particular plasma. 

E. Anharmonicity 

Deviations of the trap potential from a perfect quadru- 
pole will affect the plasma equilibrium and the mode fre- 
quencies. The precision of a particular set of electrodes is 
customarily4’ described in terms of unitless coefficients in an 
expansion of the potential about the center of the trap: 

(z2-+p2) m r i 
@t>(p,z)= v 2 

zo 
+vc Cl G 

I=0 ( 1 
P[(COS 8). (13) 

In an ideal trap, all of the C, coefficients are zero, and, in 
practice, all the odd-i coefficients are usually assumed to be 
negligible due to symmetry about z= 0 maintained during 
the construction of the electrodes. The coefficient Co repre- 
sents an unintentional (and unimportant) direct current (DC) 
offset to the potential, and C2 describes a deviation of wZ 
from its design value. The coefficient of the quartic term, C, , 
is a measure of the trap imperfection, or anharmonicity. Pre- 
cision traps have compensation electrodes in the asymptotic 
region of the trap, which make it possible to approximately 
zero C4. The optimum configuration for this purpose is one 
that produces no change in C, as C4 is adjusted, which is 
obtained for po= 1.1 6zo .4o The asymptotically symmetric 
design approximated by our trap ( po= v2zo) is not the opti- 
mum, but has nevertheless been used for most precision trap 
experiments. 

The coefficient, C, , is a useful figure of merit for a trap, 
but does not sufficiently describe a trap if large plasmas are 
to be studied. A set of carefully chosen cylindrical electrodes 
can be made to null both C4 and C6 coefficients in the 
potentiaL4’ but will nonetheless deviate greatly from a quad- 
rupole field near the electrodes, which do not lie along equi- 
potentials of such a field. For large plasmas, or when large- 
amplitude motions of single trapped particles are expected, 
the hyperboloidal geometry shown in Fig. 1 may be prefer- 
able. 

It is possible3’ to estimate the effect of a small trap an- 
harmonicity on the mode frequencies. One of the most obvi- 

. , 

-r - 
24cm 

-L 

FIG. 3. Electrode assemblies showing the scheme for exciting and detecting 
plasma oscillations: (a) cylindrical trap; (b) approximate quadrupole trap. 

ous effects of a substantial anharmonicity is that the plasma 
center-of-mass mode frequencies become dependent on the 
size and shape of the plasma. 

III. DESCRIPTION OF THE EXPERIMENT 

A. Plasma formation 

The experimental device can produce single-component 
plasmas of positrons, electrons, or ions, which may be con- 
fined in a cylindrical electrode structure or in a set of hyper- 
boloidal electrodes. Most of the data presented here are for 
electron plasmas. The positrons for the experiment were ob- 
tained from a 22Na positron emitter used in conjunction with 
a thin-film tungsten moderator42V43 or a solid neon moder- 
ator.44*45 The tungsten moderator also provides a convenient 
source of electrons via secondary emission under positron 
bombardment. If the sign of all of the electrode potentials 
used for positron trapping is reversed, electrons can be 
trapped. The electron trapping rate can be adjusted to be 
comparable to the positron trapping rate. The confinement of 
electrons is very good, typically several hours, when the 
buffer gas is pumped out. This time scale appears to depend 
on the condition of the vacuum, and does not appear to fol- 
low the B2/L2 scaling law observed by Driscoll and 
Malmberg,& suggesting that the losses are dominated by a 
process other than conventional plasma transport processes. 
We suspect that the electron losses may involve attachment 
to neutral gas atoms or molecules, possibly water vapor. Be- 
cause there are no annihilation losses, and the confinement 
time is high, the limit to the number of stored electrons ap- 
pears to result from the plasma space charge, which can be- 
come comparable to the confinement potentials. 

B. Hyperboloidal electrodes 

Electron plasma experiments were performed with plas- 
mas confined in both the cylindrical and the hyperboloidal 
electrode structures shown in Fig. 3. The unitless anharmo- 
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FIG. 4. Comparison of calculated anharmonicit ies of cylindrical electrodes 
(dotted curves) and approximate quadrupole electrodes (solid curves). (a) 
w,, vs p and (b): CO,, versus the amplitude of oscillation. 

nicity parameter for the cylindrical structure, .defiried by 
analogy to Eq. (13) but with the cylinder radius, rw , replac- 
ing z. as the distance scale, is C,-0.482. Because of evi- 
dence, described in Sec. IV A, that the anharmonicity was 
affecting the plasma mode frequencies and impeding the re- 
mote detection of positrons, a  new electrode structure, shown 
in F ig. 3(b), was designed to approximate the truncated hy- 
perboloidal electrodes of a  precision quadivpole trap. To  re- 
duce the effect on  the differential pumping caused by ob- 
struction, most of the surface of the endcaps consists of a  
mesh, with about 66% transmission. The  4.32 cm diam holes 
in the endcaps are required for positron filling. Numerical 
calculations with a  Laplace solver indicated that with such 
large holes, there was no  advantage in making the remainder 
of the endcaps precisely hyperboloidal, so a  conical approxi- 
mation to the hyperboloidal surface was made.  The elec- 
trodes were made of aluminum and plated with gold on  sil- 
ver on  copper. 

The  electrodes are designed to approximate an  asymp- 
totically symmetric quadrupole trap [see Eq. (l)] with 
zo= 6*:3 cm. The anharmonicity coefficient for this structure 
is nominally Cd- 0.055, but is influenced by external po- 
tentials because of the large holes in the endcaps. F igure 4(a) 
shows the calculated axial bounce frequency as a  function of 
radius for a  single particle in the trap, showing a  substantial 
improvement over the cylindrical structure. Another result of 
anharmonicity is the variation of the bounce frequency with 
bounce amp litude, shown in F ig. 4(b). A better comparison 

of the two traps is obtained if both values of C4 are defined 
by the same distance scale. Using z. as the scale, the results 
are C4=0. 13  for the cylindrical trap, compared to 0.055 for 
the quadrupole trap. The  modest reduction in the anharmo- 
nicity resulted in large qualitative improvements in the data, 
as described below. In addition, the new electrodes are con- 
siderably closer to the plasmas, resulting in a  great improve- 
ment in signal coupling to the plasmas. 

C. Density measurement 

The radial distribution of charge stored in the trap can be  
measured by reducing the voltage on  one of the confining 
electrodes, causing the trapped particles to stream out of the 
confinement region along the magnetic field lines. The  
“dumped” charge strikes a  set of 11  concentric annular col- 
lector plates. The  collector array is located outside the ma in 
solenoid, so the diverging field lines give a  view of the 
plasma magn ified by dm= I .76, where B, is the mag-  
netic field at the collectors. This results in a  radial spatial 
resolution at the plasma of 0.27 cm for the inner eight col- 
lectors. The  collectors are gold-plated aluminum machined to 
overlap so that all charge within the outer radius of the array 
is collected, avoiding charging of the support block. 

Dividing the charge measured on  a  collector by the area 
to which it maps gives a  measure of the z-integrated plasma 
density, qZ , at the average radius to which the collector 
maps. To  infer plasma density from these z-integrated pro- 
files requires a  numerical calculation, in which Poisson’s 
equation, V2Q(p,i) = -4rrqn(p,z), is solved with the 
proper electrode geometry and potentials. It is assumed that 
the plasma is in local thermal equilibrium along each mag-  
netic field line and that there is no  .azimuthal variation, so 
that the density at each radius has a  Boltzmann distribution, 

04) 

where Cp is the total potential, bcluding the self-consistent 
field of the plasma. Here C(p,T) is a  normalization constant 
associated with the Boltzmann factor, and q,(p) is the z 
integral of n(p,z), the data input to the program. In prin- 
ciple, the plasma temperature, T, could be  a  function of p, as 
m ight occur if rapid radial transport leads to Joule heating, 
but we always assume a  uniform temperature, which is usu- 
ally 300 K. As described below, the temperature is confirmed 
by direct measurement  to within an  accuracy of 20% at 300 
K. The computer program makes a  guess of the total poten- 
tial and distributes the known number  of particles at each 
radius according to this potenti using Eq. (14). It then 
solves Poisson’s equation to find a  new estimate for a, and 
iterates the procedure until adequate convergence is 
achieved. 

D. Temperature measurement and heating 

W e  use the standard “magnetic beach” technique to 
measure the temperature of the plasmas.47*48 A small water- 
cooled coil is posit ioned behind the collector array and its 
current is adjusted to make the total magnetic field at the 
collectors equal to the field in the confinement region. A 
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FIG. 5. (a) Temperature as a function of time after trapping. (b) Plasma 
beating by RF noise, followed by cooling on the buffer gas. The inset shows 
the temperature rise during heating pulse with a saturation at kaTeO.5 eV. 

series of nominally identical plasmas are formed and 
dumped with varying potential biases Vb on the collectors, 
and the total charge received is recorded. In principle, this 
curve contains information on  the velocity distribution of the 
plasma and can be  used to deduce the plasma temperature,4g 
but this is complicated by the changes to the plasma potential 
that occur as the plasma is dumped.  Instead, the field at the 
collectors is increased to produce a  magnetic m irror, and the 
dataset is retaken. The slopes of the two curves at their m id- 
points are used to estimate ~?lvldV,, and the separation her 
tween the curves gives an  estimate of dNldR, where R is the 
m irror ratio. The  temperature is the ratio of these quantities, 

dNldR 
kBT=q jj+-jjy- 

b 

Temperature measurements made at varying times after 
the rapid introduction of a  small number  of particles into the 
trap allow the cooling of the particles by collisions with the 
buffer gas to be  observed. As shown in F ig. 5(a), there is an  
initial rapid cooling immediately after the filling is shut off 
and thereafter, the plasma approaches its final temperature 
with an  exponential cooling time  constant, which is typically 
r,= 0.6 s and depends on  the buffer gas pressure. W e  have 
assumed that this final temperature is the temperature of the 
buffer gas, i.e., 300 K, and used this to calibrate the mea-  
surement. The  resulting scale factor of 0.85 probably arises 
from imperfections in the geometry of this magnetic beach, 

principally the variation in the strength of the m irror field 
over the surface of the collector array and the location of the 
collectors outside the ma in solenoid. This variation leads to 
an  uncertainty in defining the m irror ratio, R. 

The plasma may be heated to about 0.5 eV by the appli- 
cation of short pulses (At-2-50 ms) of broadband radio 
frequency (RF} noise (Af- 10  MHz) to one of the 
electrodes.” The plasma temperature rises quickly to a  maxi- 
mum, above which it appears that an  inelastic collision pro- 
cess, such as vibrational excitation of Nz mo lecules, provides 
strong enough cooling to stabilize the temperature. After the 
heating pulse is switched off, the plasma cools toward room 
temperature on  a  time  scale of a  few seconds. To  study plas- 
mas of a  particular temperature in the range 0.025 
C k,T< 0.5 eV, we wait for the appropriate time  after the 
application of a  standard heating pulse. A typical cycle of RF 
heating and buffers gas cooling is shown in F ig. 5(b). The  
cooling time  scale is different from panel (a) of this figure 
because a  different buffer gas pressure was used. 

E. Mode excitation and detection 

Normal modes of the plasma are studied by applying 
sinusoidal signals to one electrode and measuring the signaIs 
induced on another electrode. As shown in F ig. 3, the two 
end electrodes are used for the study of modes with no  azi- 
muthal variation. A spectrum analyzer with a  tracking gen- 
erator is used to excite resonances by sweeping the excitation 
frequency, Typical mode frequencies are a  few megahertz for 
the axial modes of electron plasmas. When  a  large amp litude 
of the drive signal is used, heating effects can be  seen in the 
form of a  reduction of the signal amp litudes and shifts in 
frequency. The  drive amp litudes were reduced to the point 
where these effects were no  longer evident. 

IV. EXPERIMENTAL RESULTS 

Plasma experiments in the cylindrical electrode structure 
began with the simple goal of remote detection and mon itor- 
ing of t rapped positrons in the original three-stage positron 
trap. This turned out to be  surprisingly difficult because of 
the small numbers of positrons then available (3X 105), vari- 
ous signal-coupling problems, and an  unexpected physical 
effect that was eventually ascribed to the anharmonic nature 
of the trap potential. In addition, the normal modes of large 
electron plasmas, though easily excited and detected, could 
not be  accurately compared with theories for either cylindri- 
cal or spheroidal plasmas. This led to the design of, the hy- 
perboloidal electrode structure described in Sec. III B and to 
a  substantial improvement in the data. Small numbers of par- 
ticles (about lo4 or more) could be  detected by exciting and 
detecting an  oscillation of their center of mass about the 
center of the trap. The  electron plasma mode frequencies 
were found to be  much more stable, but were still not in 
quantitative agreement with the cold fluid theory for spheroi- 
dal plasmas [Eq. (11) and F ig. 21. The  discrepancy was dis- 
covered to be  ma inly the result of the finite plasma tempera- 
ture. This effect has been studied in detail for the lowest- 
order axial plasma mode,  the quadrupole mode.  
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A. Cylindrical trap 

1. Electrostatics 

As shown in Fig. 3(a), the electrodes of the third stage of 
the positron trap consist of three cylinders and a flat disk- 
shaped electrode with a hole in the center for particle access. 
The end cylinder is set to a potential V, , the disk electrode is 
set to V2, and the middle two cylinders are grounded. The 
plasmas studied are contained well within the long cylinder, 
so that the hole in the disk and the details of the geometry 
beyond the second short cylinder are not important. As a 
result, the basic features of the electrostatics of the trap can 
be determined analytically from the Green’s function for a 
closed cylinde?’ by placing a fictitious disk at the far end of 
the second short cylinder. Useful results that can be obtained 
include the location of the potential minimum and the expan- 
sion of the potential about the minimum [as in Eq. (13)], as 
functions of the potentials on the disk electrode and the short 
cylinders with respect to the long cylinder. The results are in 
good agreement with more laborious numerical solutions to 
Laplace’s equation. 

A simpler approach that gives very similar results uses 
only the dominant terms of the expansion for the trap poten- 
tial obtained from the Green’s function. This gives the form 

@b,Z)~Jo i 1 xyf (VICle-Xol~rw+ V2C2exol”r”), (15) 

where J,, is a Bessel function, x0,-2.4048 is the first zero 
of Jo(x), c r and c2. are constants, and z = 0 is defined as the 
geometrical center of the trap. The exponentials are approxi- 
mations to hyperbolic sine functions. Considering the poten- 
tial along the axis (p=O), we can easily find the position of 
the minimum, 

rw ClVl 
zc= yg ln------ 

i 1 c2v2 ’ 

and the power series expansion of @( 0,~) about the mini- 
mum, which is recognized as a hyperbolic cosine function, 
giving the result 

~(p,r)-2i~~~2V*V~)1’2Jo( yjcoshj xol(;,zc)). 

(17) 
The frequency of small oscillations about z, is found to be 

Equation (17) is a generic form for the potential near a 
minimum inside a long cylinder. Different geometries of the 
end electrodes, different cylinder lengths, and different 
choices for the location of z = 0 affect only the coefficients 
cl and ca, as long as VI and V2 are not so different that the 
potential minimum is close to one of the end electrodes. The 
insensitivity of z, to VI and V2 indicated by Eq. (16) is a 
problem if a center-of-mass oscillation is to be excited by 
oscillating V, and detected by signals induced on V, . A more 
physical explanation is that external fields die out exponen- 
tially with distance inside a conducting cylinder, which is the 
essence of Eq. (15). The anharmonicity of the potential is 
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FIG. 6. Dependence of (a) amplitude and (b) frequency of the axial center- 
of-mass oscillation on the number of particles in the cylindrical trap. 

easily found from the power series for the hyperbolic cosine. 
A distance scale must be chosen [for example, in Eq. (13), 
coordinates are scaled by zo], and the natural choice in this 
geometry is the radius of the cylinder wall, rw . This results 
in C,=x$,/l2, i.e., C,-0.482, for any long cylindrical 
trap. The positive sign of C, indicates that the potential well 
“stiffens” with increasing distance from the minimum. 

2. Center-of-mass mode 

For clouds of particles in which space charge effects are 
negligible, the particles will collect about the axial potential 
minimum, with the radial distribution with which they are 
trapped. If their radial distribution is narrow and their tem- 
perature is low enough that they stay close to the minimum, 
the potential is approximately quadrupole, leading to small- 
amplitude harmonic oscillations at the frequency, w,(O), 
given in Eq. (18). A coherent excitation of all the particles 
produced by a sinusoidal signal applied to one of the short 
cylinders will result in the oscillation of their center of mass 
at the frequency o,, =0,(O), which will produce a signal 
proportional to N on the disk electrode. 

This simple result was never observed with the cylindri- 
cal electrodes. instead, it was found that unexpectedly large 
numbers of particles were required to produce a detectable 
signal (N- 1 07), that this signal occurred at a frequency 
w~.>oJO), and that the amplitude of the signal was a non- 
linear function of N and of other uncontrolled variables. Fig- 
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FIG. 7. (a) Center-of-mass response spectra, for about lo7 electrons in the 
cylindrical trap, at varying times after a rapid fill. The curves are offset 
vertically for clarity. (b) Cooling curve measured under the same conditions. 

ure 6 shows a typical dataset. Such large collections of par- 
ticles are plasmas and elongate considerably due to their 
space charge, so it is reasonable that the signal coupling will 
improve and that the frequency may rise as the longer plas- 
mas feel the trap anharmonicity more strongly. 

What is surprising is that there is a threshold behavior to 
the response, such that the response detected for (N- 10’) is 
relatively strong, but a 20% reduction in N below this results 
in a very small signal. A more telling result is that this 
threshold is correlated with temperature, as demonstrated in 
Fig. 7, where the response spectrum of 10’ electrons is moni- 
tored as the plasma cools after a rapid fill. The response as a 
function of temperature for this dataset is shown in Fig. 8, 
which also shows the results for a plasma with half as many 
particles. 

Because such an effect cannot easily be explained in a 
pure quadrupole potential, the trap anharmonicity appears to 
be a contributing factor. The dependences on T and N (which 
implies a dependence on n) could both be explained by the 
existence of a threshold value when the size of the plasma is 
comparable to the Debye length. It may be that the typical 
radial particle distribution, which is approximately Gaussian 
with a rms radius of about 1 cm, is wide enough to cause 
substantial phase mixing of the signals from particles at dif- 
ferent radii because of the radial variation in wZ indicated in 
Eq. (18) and in Fig. 4(a). Even particles at the same radius 
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FIG. 8. Amplitude of center-of-mass response versus temperature: (0) data 
in Fig. 7; (0) half as many particles. 

will have a distribution of bounce periods due to anharmo- 
nicity and the thermal distribution of amplitudes of oscilla- 
tion, as shown in Fig. 4(b). A charge cloud with sufficient 
plasma character (i.e., one with XD<Xthreshold) would tend to 
move collectively and might avoid these damping mecha- 
nisms. It is not clear, at present, whether this phenomenon is 
related to the synchronization of particle motion observed in 
cryogenic traps with smaller numbers of particles5*“’ 

3. PIasmas 
In spite of the difficulty of detecting small numbers of 

particles in the cylindrical trap, there is no trouble exciting 
and detecting various normal modes of large plasmas. A typi- 
cal response spectrum, shown in Fig. 9, presents a family of 
resonances of increasing frequency excited by a sinusoidal 
signal applied to one of the confining electrodes (see Fig. 3). 
Density profiles of the plasmas, obtained by applying the 
Poisson solution program to charge collector data (as de- 
scribed in Sec. III C), appear roughly spheroidal, so an at- 

0 1 2 3 4 5 
frequency (MHz) 

FIG. 9. Spectrum of a plasma of about 2x10’ electrons in the cylindrical 
trap. Values of I refer to the mode theory for spheroids [Eq. (1 l)]. 
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FIG. 10. (a) The z-integrated radial profiles for two plasmas in the cylindri- 
cal trap with similar numbers of particles and diierent aspect ratios: (0) 
(r-20, (Cl) a-5. (b) Comparison of the frequencies of four modes in the 
plasmas shown in (a) with spheroidal mode theory shown by small points 
connected by smooth curves. 

tempt was made to analyze the data using the spheroidal 
mode theory [Eq. (11) and Fig. 21. A strong response was 
expected at the value of ~~(0) predicted by Eq. (18). As 
mentioned in the preceding section, the strongest r;esponse 
consistently occurred at a substantially higher frequency, but 
by decreasing N it was possible to track the mode frequency 
close enough to ~~(0) to be confident of its identification as 
the center-of-mass oscillation. The higher-frequency series of 
modes were thus suspected to be the 1=2,3,4 ,..., axial 
modes predicted by the theory. 

To test the dependence of the mode frequencies on as- 
pect ratio, two similar plasmas with different aspect ratios 
were obtained by filling them under identical conditions and 
then reducing B in one case to expand the plasma radially, 
giving the z-integrated radial profiles shown in Fig. 10(a). 
The frequencies of the most prominent modes observed in 
each case are plotted in Fig. 10(b). The value of o,, was 
different for the two plasmas and was not close to o,(O) in 
either case, so the mode theory will clearly not be satisfied to 
any degree of precision. It was found that by scaling the 
frequencies by the measured values of o,, rather than 
W(O), better agreement with the theory was obtained. Sets 
of frequencies predicted by the theory for four different as- 
pect ratios are also shown in Fig. 10(a), connected by lines to 
distinguish them from the data points. These data show suf- 
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FIG. 11. (a) Center-of-mass response spectra of about IO7 electrons in the 
quadrupole trap at varying times after a rapid fill. The curves are offset 
vertically for clarity. (b) Cooling curve measured under the same conditions. 

ficient qualitative agreement with the behavior predicted by 
the cold fluid theory to be confident with the identification of 
the modes. For the radial profiles shown in Fig. 10(a) a low- 
resolution collector plate assembly consisting of only five 
rings was used. For this part of the experiment, this low 
resolution was not a great restriction because of the qualit&- 
tive nature of the result. However, for the experiments de- 
scribed in Sec. IV B, where a quantitative analysis was 
made, the resolution of the collector plate assembly was im- 
proved by increasing the number of rings to 11.” 

Two weaker modes are visible at frequencies less than 
o,(O) in the spectrum. Possible candidates for these modes 
are tlie I= 3 and 1= 4 modes with radial structure indicated 
in Fig. 2. 

B. Quadrupole trap 

1. Center-of-mass mode 

In the yuadi-upole trap, the nonlinear behavior of the 
axial center-of-mass mode seen in the cylindrical trap is ab- 
sent. When data such as-that shown in Fig. 7 is obtained in 
the quadrupole trap, the amplitude and frequency of oscilla- 
tion appear to be independent of the plasma temperature, as 
shown in Fig. 11, in strong contrast to the trend shown in 
Fig. 7. Because of the increased sensitivity, it is possible to 
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FIG. 12. Dependence of center-of-mass frequency on the number of par- 
ticles, N, in the quadrupole trap for Vti,=3.2 V, Vcndcnpr=O V, The numbers 
labeling the curves are the various external potentials. 

track the amplitude of the response across the range of N 
over which the transition to a plasma should occur. 

The dependence of wcrn on N can be adjusted to some 
extent by varying the quadrupole trap potentials relative to 
the rest of the trap. This is shown in Fig. 12, in which curves 
of o,,(N) are taken for various values of the external poten- 
tials. The most obvious features are that it is possible to tune 
the anharmonicity to make o,.,, independent of N for 
N< lo’, but that for much higher n, w,, rises regardless of 
the anharmonicity. ’ ’ 

The remainder of the data in this section were taken with 
the anharmonicity adjusted tq minimize the variation of o,, 
with N, even though this did not occur at the expected values 
of the external potentials. It appears that, rather than nuliing 
C, , this procedure adjusted it to balance the initial effect of 
the increasing image charge. 

2. Plasmas 

Axial plasma modes are easily excited and detected in 
the quadrupole trap. A typical spectrum has strong E= 1 and 
I= 2 peaks, and sometimes either a weak I= 3 peak or one or 
two weak low-frequency modes. For plasmas with small as- 
pect ratios, the modes with frequencies less than oZ can be- 
come prominent. Typical spectra taken in the quadrupole trap 
have significant qualitative differences from the spectra 
(such as Fig. 9) obtained in the cylindrical trap. The signal- 
to-noise ratio is greatly improved by the superior signal cou- 
pling, but fewer of the purely axial modes are detected, prob- 
ably because of the different plasma shapes studied in the 
two traps. The geometry of the hyperboloidal trap enforces 
the restr$tion L<2zo on the plasma length. Because of the 
condition X,+X for undamped plasma modes, discussed in 
Sec. II C, fewer axial modes are expected for a short plasma. 
This is the only disadvantage that we have found to using the 
quadrupole trap. 
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FIG. 13. (a) Temperature during a cycle of RF heating and cooling on the 
buffer gas. (b) Frequencies of the center-of-mass (I= 1) and quadrupoie 
(1=2) modes during the heating cycle shown in (a). A spectrum for ~0 is 
shown in the inset. 

3. Temperature dependence of quadrupoie mode 

The technique described previously of reducing the mag- 
netic field B to obtain similar plasmas with different aspect 
ratios was used to measure the dependence of the qua&pole 
(I = 2) mode frequency on (Y, and a significant discrepancy 
with the cold fluid theory remained. Much of this difference 
is caused by the nonzero temperature of the plasma. Figure 
13(b) plots the frequency of the quadmpole mode measured 
at various times during a cycle of RF heating and cooling, 
with the plasma temperature shown in Fig. 13(a). This figure 
also shows the frequency of the center-of-mass mode, and as 
expected, no significant temperature dependence is observed, 
Figure 14(b) shows the quadrupole mode frequency as a 
function of temperature for three plasmas with differ&t as- 
pect ratios. The radial profiles are shown in Fig. 14(a). When 
the data are extrapolated to T=O, frequencies within about 
1% of the cold fluid predictions for the quadrupole mode are 
obtained, confirming our identification of the mode. 

The cold fluid theory assumes a cold plasma of uniform 
density in au exactly quadratic potential imposed by distant 
electrodes. To model effects not included in the cold fluid 
theory, Spencer and Mason performed numerical simulations 
of the plasmas.” The electrode voltages and z-integrated 
density profiles of experimentally measured plasmas were 
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cu=7.80, L=8.32 cm. The solid lines are numerical simulations and the 
dotted lines are from the fluid theory using &. (19). ., 

used as input to a Poisson-Boltzmamr equilibrium code.,The 
resulting. equilibria, from which the plasma aspect ratios 
were obt.ained, were constrained to match the experimental 
density’ profiles and the total particle number. The computa- 
tions were done assuming axisymmetry and used a 120 by 
240 grid for the coordinates p ahd z. 

The cqmputed equilibria were then used to create initial 
distributions for particle-in-cell simulations that used the 
same spatial grid and electrode representation as the equilib- 
rium computation. The center-of-mass and quadrupole 
modes were excited by displacing all of the particles by a 
small amount in the same direction in z and also by stretch- 
ing the plasma along the z axis. The position of the center of 
mass .’ I b 9 and the density average of the square of the po- 
sition of the plasma relative to the center of mass ((z - .z;~)~), 
were then tracked in time and Fourier analyzed to yield the 
frequencies of the center-of-mass and quadrupole modes, re- 
spectively. The plasma was represented by 50 000 particles, 
which were advanced through 16 384 time steps of 4X 10-s s 
each. 

The experimentally measured plasmas shown in Fig. 14 
were studied using these simulation techniques. From the 
Poisson-Boltzmann code, the aspect ratios were found to be 
7.80, 4.38, and 2.24. For each aspect ratio, simulations were 
made for ten temperatures in the range 0.001-O. 176 eV. The 

predicted frequency ratio between the quadrdpdie and center- 
of-mass modes shown by the solid lines in Fig. 14 is in 
excellent agreement with the data. The simulation frequen- 
cies at the lowest temperatures agree well with the predic- 
tions of Dubin’s cold fluid theory (i.el, to within 3%), as 
shown in Fig. 14(b). This is interesting in view of the fact 
that the density profiles shown in Fig.. 14(a) differ substan- 
tially from the nearly uniform density expected ‘for a plasma 
in global thermal equilibrium (and assumed by the cold fluid 
theory). The insensitivity of the mode frequencies to the 
plasma profile simplifies their use as &agnostics, as dis- 
cussed in Sec. IV C. 

An approximate analytical treatment of temperature ef- 
fects on the quadrupole mode frequency was proposed re- 
cently by Dubin. This model leads to a prediction of a shift 
in the quadrnpole mode frequency from the cold fluid result 
0; to cLl2? 

kBT (W*)2=(W”2)2+20[r-g(a)l 79 mL- 

with 

a2 a; d2A, 
g@)=y(wS)2dq23 

(19) 

cm 

where A3(a) is defined in Eq. (7) and y=3 is the ratio of 
specific heats for one-dimensional expansions. All quantities 
on the right-hand sides of Eqs. (19) and (20) are evaluated in 
the cold fluid lim it. The function g(n) describes the fie- 
quency shift from the temperature dependence of the plasma 
shape. If this term is neglected, one obtains a result similar to 
the Bohm-Gross dispersion relation for a warm neutral 
plasma, w2=o$+ yk$kBTlm, with k,--rr(l- 1)/L. 

The data shown in Fig. 14 indicate that (02)~ is linear in 
T for the longer plasmas, but deviates from linearity for the 
shortest plasma, for which the temperature dependence is 
strongest. For the same value of T and the same mode, the 
effect of temperature is stronger for shorter plasmas because 
the wavelength of the mode is smaller, making the effective 
temperature higher. The slopes of the curves at low tempera- 
tures agree reasonably well with the predictions of Eq. (19), 
which are plotted as dashed lines in Fig. 14. 

C. Diagnostic applications 

For positron and positron-electron plasmas, nondestruc- 
tive diagnostics are essential, and the measurement of the 
frequencies of plasma modes is an attractive way of accom- 
plishing this, because frequencies can be measured with 
great precision. The modes studied are global, and thus they 
provide information on global plasma parameters. For the 
purposes of mode studies, the spatial distribution is ad- 
equately parametrized by L and c~, since the mode frequen- 
cies are relatively insensitive to the radial density profile. 
Therefore, the cold fluid equilibrium theory for a uniform- 
density spheroid [Eq. (6)] may be used to relate the param- 
eters N, CY, and L: 

2 

L3=z cr2A3(a)N. 
z 

(21) 
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FIG. 15. Spectrum of a positron plasma of 6X IO’ particles in the cylindrical 
trap. 

Thus, a measurement of N fixes a relationship between L and 
a. Measurement of two plasma modes combined with the 
results of simulations or warm fluid theory would provide the 
additional relationships to uniquely determine L, a, and T, 
and hence also the plasma radius and density. If the tempera- 
ture is known, as it is in the presence of a buffer gas, then 
with IV determined from the amplitude of the center-of-mass 
response, Eqs. (19) and (2 1) may be used to determine L and 
cy from the quadrupole mode frequency. Once the plasma 
parameters are established, whether by these techniques or 
by other diagnostics, subsequent changes in either tempera- 
ture or shape may be deduced from additional shifts in a 
single-mode frequency, as in the data for c.+, during a heating 
pulse, shown in Fig. 13. Alternatively, if the temperature can 
be controlled, the plasma length and aspect ratio may be 
found from the slope and intercept of data for (~2)~ vs T. 
Applying this technique to the data in Fig. 14, we obtain 
lengths of 8.5, 7.3, and 5.3 cm for the three plasmas, while 
the experimental values are 8.3, 7.5, and 6.2 cm, respec- 
tively. 

The use of data from modes other than the quadrupole 
mode would benefit greatly from a complete theory of finite- 
temperature spheroidal plasmas. Modes with azimuthal 
structure, such as the I= 2, m  = 2 diocotron modes, have 
frequencies that depend on aspect ratio,7 and they could pro- 
vide the data needed for complete determination of the bulk 
plasma parameters, if their temperature dependence were un- 
derstood. 
D. Positron plasmas 

All the preceding data were obtained using electrons. At 
the time of the early work in the cylindrical trap, the largest 
positron plasmas consisted of about lo6 positrons, and due to 
the anomalous damping and the poor sensitivity of the cylin- 
drical trap, even their center-of-mass motion could not be 
detected. With the construction of the quadrupole trap, the 
sensitivity improved and the anomalous damping was elimi- 
nated, permitting the detection of the center-of-mass motion 
of as few as lo4 positrons, but no plasma modes were seen. 

With the replacement of the tungsten-film positron mod- 
erator by a more efficient solid neon moderator, plasmas con- 
taining more than 108 positrons can now be obtained. Figure 

15 is a mode spectrum obtained for such a positron plasma 
confined in the cylindrical trap, where the positron trapping 
efficiency is highest. Strong signals are seen for the center- 
of-mass oscillation and for the I= 2 and l= 3 axial plasma 
modes. This is the first time that collective modes of an 
antimatter plasma have been observed. As with the electron 
plasmas, fewer modes are observed in the quadrupole trap, 
but the quadrupole mode is seen. 

V. CONCLUSIONS 

We have studied the normal modes of single-component 
plasmas in cylindrical and hyperboloidal geometry, and for 
the latter case, we have found good agreement with the com- 
prehensive normal mode theory of Dubin. This study 
complements the work on cold ion m icroplasmas,8V9 in which 
excellent agreement with the theory has been obtained for 
the frequencies of the quadrupole mode and the 1= 2, m  = 1 
modes. Under the proper conditions, confidence in the theory 
is sufficient to justify its use as a measurement tool, as in the 
studies by Weimers3 of cryogenic electron plasmas. 

Because some of the conditions of our experiments are 
set by considerations other than the production of small, 
cold, precisely spheroidal plasmas, we have considered the 
effects of various perturbations. Important effects of which 
we are aware include those due to image charges, nonuni- 
form density protile, trap anharmonicity, and plasma tem- 
perature. At this point, some progress has been made in un- 
derstanding the frequency shifts caused by finite 
temperature, which can now be used to measure this impor- 
tant parameter. By varying N, varying the trap anharmonic- 
ity, and allowing electron plasmas time to reach equilibrium 
after pumping out the buffer gas, it may be possible to un- 
ravel the separate effects of the remaining perturbations, and 
such experiments are planned. The success of the numerical 
simulations by Spencer and Mason in matching the quadru- 
pole mode data suggests that such calculations could be of 
great use in studies of this type. That all these complications 
may be treated as small perturbations to the cold fluid theory 
suggests that the theory will continue to be of great utility. 

Quadrupole traps and spheroidal plasmas offer the op- 
portunity to approach some of the unsolved problems of non- 
neutral plasmas from a new perspective. If a phenomenon in 
question has been tentatively identified as a “three- 
dimensional” (3-D) effect in cylindrical plasmas, it m ight be 
interesting to repeat the experiment with spheroidal plasmas, 
in which the 3-D nature is under experimental control, and is 
perhaps better understood. The features that make quadru- 
pole traps appealing to atomic physicists, the exactly soluble 
simple harmonic motions of single particles and their long 
confinement time, may make studies of plasmas in quadru- 
pole traps an interesting test of field-error-driven transport, 
since resonances with field errors could be very strong (the 
harmonic frequencies do not shift off resonance as the am- 
plitude of motion grows) and would be shared by ail par- 
ticles, if space charge is negligible. Because good connne- 
ment does not require the strong self-field of a well- 
developed plasma, it may also be possible to learn about the 
nature of marginal plasmas and of the transition from inde- 
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pendent particle motions to the collective behavior of a 
plasma. 
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APPENDIX: ANALYTICAL FORMULAS FOR 
SPHEROIDAL PLASMAS 

An explicit form for the spheroidal equilibrium, ex- 
pressed in terms of Qy in Eq. (6), is 

0.$ _ (1~~~~~‘~(~~~a arcsinJi--Z;Z)-‘, for a<l, 

i q- (a2- 1)3’2{(d2)ln[(a+ &77)l(a-- Jm)]- &Zi}-‘, for cu> 1. 
This corresponds to l/B(a), in the notation of Ref. 8. 

The frequency of the quadrupole mode of a cold, strongly magnetized spheroidal plasma has the form 

a!2 (a2+$ll[(a+j2=T)/(a- &?=i)]-3a~i77 

(Al) 

(‘w 

for a>l, the case typical of our electron plasmas. 
Finally, a few notes on the roots of the dispersion rela- 

tion of axial modes for the strongly magnetized case. The 
dispersion relation, Eq. (1 l), may be written in the form 

(k:-1)~;(kI)=wl(~)k,~l(kl), (A3) 

where kt= (~(a’- 1 + w~/w~)-~‘~ and 

1 
w(a)= 

Qp’( a/&?-=-i=) 

a j2-7 Qp(&Fi) * 
(A4) 

Equation (A3) is a polynomial in k, of order If 1, with 
coefficients that depend on LY. For even values of 1, a factor 
of kt divides out. For any I, the result is a polynomial in kf 
of order [(I + 1)/2], where “[ 1” denotes the maximum in- 
teger. Thus, there is one root for I= 1 or I= 2, and there are 
two roots for 1= 3 or 1=4, etc. Each solution for kf at a 
particular value of a translates into the value of w for the 
normal mode, scaled by wP . The different eigenvalues of w 
obtained for the same values of 1 and m correspond to nor- 
mal modes with different radial structure. The modes with 
purely axial structure have the highest frequencies. 
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