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A nondestructive technique was developed recently to create beams of electrons �or positrons� with
small transverse spatial extent and high brightness from single-component plasmas confined in a
Penning–Malmberg trap �T. R. Weber et al., Phys. Plasmas 90, 123502 �2008��. A model for beam
extraction was developed that successfully predicts the resulting beam profiles. This model is used
here to predict the beam amplitudes and the energy distribution of the beams as a function of the
exit-gate voltage. The resulting expressions, suitably scaled by the plasma parameters, depend only
on the exit-gate voltage and the electrode radius. Predictions of the theory are confirmed using
electron plasmas. This technique permits the formation of beams with both small transverse spatial
extent and small energy spread. Applications involving antimatter beams �e.g., positrons� are
discussed, including bright beams for improved spatial resolution, short pulses for time-resolved
studies, and cold beams for improved energy resolution. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3110109�

I. INTRODUCTION

Charged particle beams are useful in a wide range of
applications in science and technology.1–5 In the case of com-
mon particles such as electrons, beams generated by a simple
heated cathode are adequate for many applications. However,
when the particles are more difficult to obtain, as is the case
with positrons and antiprotons, more refined techniques are
required. In this case, it has proven convenient to use trap-
based beams, where the particles are first accumulated effi-
ciently and cooled in an electromagnetic trap, then a beam or
pulse of particles is extracted.5–9 In recent work, which pro-
vides the starting point for this paper, a Penning–Malmberg
trap was used to create high-quality, trap-based beams.10,11

The technique is illustrated in Fig. 1. Rotating electric fields
are used to compress plasmas radially, and then the confin-
ing, end-gate potential is lowered carefully to extract a beam
from the center of the trapped plasma �i.e., where the space
charge potential is largest�. The processes of plasma cooling,
radial plasma compression, and beam extraction can all be
accomplished nondestructively with nearly 100% efficiency
making this method particularly useful for the formation of
tailored beams of antimatter.

The work presented here focuses on the further develop-
ment of this technique to create tailored, high-quality beams
by extraction from plasmas in a Penning–Malmberg trap. It
is shown that this method of the formation of beams with
small transverse spatial extent is a true brightness enhancing
process. Specifically, it preserves the narrow energy spread
of the beam, which, in turn, is set by the plasma temperature.
Such beams are expected to be useful in many applications.
For example, the creation of beams with small transverse
energy spread and small transverse spatial extent is critical in
the development of positron microscopic techniques to study

materials.2,12 In another application, beams with small total
energy spread will enable new kinds of spectroscopic studies
of positron interactions with matter such as higher resolution
studies of the positron-impact excitation of vibrational and
rotational transitions in molecules.13–15 Similarly, beams with
narrow parallel energy spread will facilitate pulse compres-
sion in the time domain. This, in turn, could enable the de-
velopment of new techniques for positron annihilation life-
time spectroscopic �PALS� studies of materials.16–23 Another
important application of tailored positron sources is the cre-
ation of cold antihydrogen atoms,24,25 one goal of which is to
test fundamental theories of nature �e.g., the CPT theorem
which requires the invariance of field theories under charge
conjugation, parity inversion and time reversal�. As dis-
cussed at the end of this paper, beams with small transverse
spatial extent and small total energy spread could potentially
enable new scenarios to create these cold antiatoms.

As we discuss below, a key parameter determining the
beam properties in the regime studied here is the scaled
beam-pulse amplitude

� =
e2Nb

TLp
, �1�

where Nb is the number of beam particles extracted and Lp is
the plasma length.11 Physically, � is the change in the plasma
potential across the beam due to the extracted beam particles,
scaled to plasma temperature T. A central result of Refs. 10
and 11 is that, for small beams �i.e., small number of beam
particles, ��1�, the radial beam profile is Gaussian with a
minimum full width to 1 /e of 4�D, where �D is the Debye
length.11 Experimentally, we find that as � increases, the
beam width also increases. As discussed below, this is due to
the fact that the exiting particles flatten the potential profile
near the plasma center.

a�
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This paper focuses on the energy distributions of the
particles extracted using this technique. Although the beam
energy distribution is simply the energy distribution of the
plasma particles that can escape, it contains a dependence on
the changing plasma potential ��r�. Because of this, it has a
nontrivial dependence on � �or equivalently Nb�. A simple
model for beam extraction is used to derive an expression
that accurately predicts � for a given plasma and end-gate
extraction voltage VE. Using this expression, the beam en-
ergy distribution f�E�� as a function of E�, the kinetic energy
of the beam particles in motion parallel to the magnetic field,
is derived for given values of � �which is set by VE�. Other
parameters of interest including the root-mean-square �rms�
spread �i.e., the dispersion� in the total energy of the beam
�E and changes in the shape of the distribution function as a
function of � are also discussed.

II. PENNING–MALMBERG TRAP
FOR BEAM FORMATION

Plasma particles are accumulated and stored in a
Penning–Malmberg trap, shown schematically in Fig. 2�a�.11

It consists of a set of cylindrical electrodes of inner radius
RW=1.27 cm in a uniform magnetic field of strength B
=4.8 T. The particles are confined radially by the magnetic
field and axially by voltages VC, applied to electrodes at each
end. The resulting plasma is in thermal equilibrium at tem-
perature T. The plasma is a uniform density rigid rotor rotat-
ing at an E�B frequency, fE=cn0e /B, where n0 is the equi-
librium plasma density. The plasma parameters are
z-independent, thus making r and � the coordinates of
interest.

The principal diagnostic used here is a digital camera
and a phosphor screen, located outside of the trap, to image
the two-dimensional �i.e., areal� plasma density distribution.
By quickly reducing VC on one end of the plasma to zero, the
plasma particles stream out of the trap along the magnetic
field. They are then accelerated to energies of 5 keV and then
impinge on a phosphor screen. The resulting fluorescent light

is imaged to obtain the z-integrated areal plasma density pro-
file �z�r ,��. A typical image is shown in Fig. 2�b�. The
plasma density n is then given by n�r ,��=�z�r ,�� /Lp, where
Lp is the plasma length. The magnetic field decreases adia-
batically from the end of the trap to the phosphor screen,
causing the beam to increase by a factor of 5 when it is
imaged. However, all measurements in this work refer to the
beam while it is still in the trap.

To extract a beam from a trapped plasma, VC at one end
of the plasma is lowered to a value VE for about 15 	s. This
process is illustrated schematically in Fig. 3�a� where the
potential at r=0 is shown during an extraction. The extrac-
tion time is chosen to be sufficiently long so that particles
with sufficient energy have ample time to escape, but short
enough so that the effects of collisions, instabilities, and ra-
dial transport are negligible. Because the plasma potential is
highest at the �radial� plasma center, the beam emanates from
this region. This is then used to create beams with spatial
extents much smaller than those of the original plasma.
Shown in Fig. 4 are examples of radial profiles of extracted
beams for two values of �. Figure 3�b� shows images of a
plasma before and after a beam is extracted. Notice the small
hole at the center, illustrating the location of the particles that
exited the trap. This hole moves to the plasma edge and
disappears in a time=500 	s which, in turn, may permit
pulsed-beam extraction at kilohertz rates.

FIG. 1. Simplified schematic diagram of the technique used to extract beams
with small transverse spatial extent from single-component plasmas in a
Penning–Malmberg trap.

FIG. 2. �Color online� �a� Schematic diagram of the experimental arrange-
ment and �b� a CCD image of the areal plasma density �z�r ,�� for an
equilibrium flat-top plasma.
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III. THEORETICAL CONSIDERATIONS

In this section, an expression is developed for the energy
distribution of the beam particles as a function of � which, in
an experiment, is set by VE. As mentioned above, it is as-
sumed that the exit gate is lowered for a time �t, which is
sufficiently long so that all particles with enough energy to
escape do so. It is also assumed that at a given radius, par-
ticles escape in the order of E� such that the particles with
largest E� escape first and those with smallest E� escape last.
While not strictly valid, this assumption makes the calcula-
tions below tractable and is qualitatively correct in that the
particles with large E� traverse the plasma length faster than
particles with small E�, and thus they are likely to escape
first. The finite slewing time of the exit-gate electrode also
favors this order.

When the end-gate potential is lowered to VE and the
particles begin to escape, the potential near the center of the
plasma changes in such a way as to inhibit further particles
from leaving. We denote �0�r� and n0�r� as the equilibrium
plasma potential and density, and ���r� and �n�r� as the

change in the plasma potential and density from equilibrium
due to the extracted beam particles. After extraction, the new
density and space-charge potential profiles are n�r�=n0�r�
−�n�r� and ��r�=�0�r�−���r�, respectively. A similar the-
oretical description has been used previously to evaluate the
effect of space charge on measurement of the plasma
temperature.26–28 In contrast, as stated above, this paper
evaluates explicitly the effect of the space charge on the
energy distribution of the escaping particles.

The condition that a particle escapes is E� 
−eVE, where
E� is the kinetic energy outside of the trap of a beam particle
in the motion parallel to the magnetic field and VE is the
extraction voltage referenced to ground potential outside the
trap �i.e., 0 V�. When an electron escapes from the plasma to
a region of zero potential, it does so along a magnetic field
line at a constant radius. The energy E� is a sum of the
kinetic and potential energy of the particle in the plasma
before it escaped. With this in mind, the single particle dis-
tribution function for a “flat-top” plasma in thermal equilib-
rium is approximately

fP�E�,E�,r,�,z� �
n0�r�

��T3/2

exp�−
E� + E� + e��r�

T
	

�E� + e��r�
, �2�

where the uniform E�B rotation has been neglected, an as-
sumption valid when the thermal velocity is much greater
then the rotation velocity at the edge of the beam. For small
beams ��b=2�D�, the condition for this assumption can be
written as wp

2 /wc
2�1 and is satisfied for all plasmas far from

the Brillouin limit. For the plasmas in this work, wp
2 /wc

2

�1�10−5.

FIG. 3. �Color online� �a� Schematic diagram of the beam extraction process
and �b� camera images of the areal plasma density �z�r ,�� for a flat-top
plasma before beam extraction �above� and 10 	s after beam extraction
�below�; also shown are the radially corresponding averaged slice distribu-
tions �z�r�.

FIG. 4. �Color online� Shown are the areal radial distribution functions
�b�r� for electron beams with amplitudes ��0.02 and 0.5 plotted with open
circles and triangles, respectively. A Gaussian fit �¯� to the beam distribu-
tions indicates half widths to 1 /e of �b�2.2�D and 2.6�D, respectively. The
z-integrated areal density distribution �z�r� of the initial plasma �solid
circles� is also shown.
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Here, E� is the kinetic energy of a beam particle in the
motion perpendicular to the magnetic field, which is assumed
to remain constant during the beam extraction process. In the
plasma, the kinetic energy of a particle in the motion parallel
to the magnetic field is E� +e�0�r�. When a beam is extracted
from the plasma to a region of zero potential, the energy
distribution of the beam is given by Eq. �2� integrated over r,
�, and z with the additional constraint that E� 
−eVE. How-
ever, the dependence of ���r� on the number of escaping
particles makes the calculation of this integral nontrivial. For
sufficiently small beams, ���r� can be neglected so that
��r���0�r� and is independent of �. The potential �0�r� can
be calculated analytically and is quadratic in r �i.e., inside the
constant-density plasma�.11 Integration over the spatial vari-
ables is then tractable. This and integration over E� yield for
parallel-energy distribution

f�E�� =
Lp

e2 erfc
E� + e�0�0�
T

� , �3�

where erfc is the complementary error function for values of
E� 
VE; f�E��=0 for E� VE. It is related to the full energy
distribution �i.e., including E�� by f�E� ,E��= f�E��e−E�/T /T.

When �E� +e�0�r�� /T�2, Eq. �3� can be approximated
by

f�E�� �
Lp

�T

e2��

exp�− �E� + e�0�0��/T�
�E� + e�0�0�

. �4�

This is the approximate energy distribution for small
beams �i.e., when ��1�. Equation �4� is just the tail of a
Maxwellian energy distribution starting at energy of
−e�0�0�.

For larger beam amplitudes, ���r� cannot be neglected.
In previous work11 it was shown that for �1, radial beam
profiles extracted in this way are Gaussian distributions with
widths given by

�b = 2�D�1 + ��1/2. �5�

The change in potential in the plasma ���r� can be cal-
culated analytically for a Gaussian beam

���r� =
T�

e

2 ln

r

RW
+ ��0,

r2

�b
2	 − ��0,

RW
2

�b
2 	�

� ���0� + �
T

e

r2

�b
2 , �6�

where � is the upper incomplete gamma function. The ap-
proximation in Eq. �6� is reasonably good over the region in
the plasma where the beam is extracted, �r /�b��1. Because
the leading term in Eq. �6� is quadratic in r, it can be inserted
into Eq. �2� and integrated over space in the same manner
that led to Eq. �3�. Unfortunately, this expression contains �,
which is an unknown parameter. However, by integrating
over E�, an integral expression can be obtained for �,

� =
e2

TLp


VE

�

f�E��dE� . �7�

This expression is most conveniently written in terms of �,
RW /�D, and the parameter

� � −
e

T
�VE − �0�0�� . �8�

The result is a universal form valid for all beams, namely,

� = �1 + ��
Ae−A2

��
− �A2 − 0.5�erfc�A�� , �9�

where

A =�� + �
� + 2 ln
RW

�D
+ ��0,

RW
2

�b
2 	�

and � is the Euler gamma constant. The quantities � and �
are the suitably scaled values of Nb and VE, respectively.
Thus, for a given initial plasma and value of RW /�D, Eq. �9�
relates Nb to VE. In this case, Eq. �9� can be used to calculate
Nb as a function of VE for fixed values of RW /�D. Although
Eq. �9� is a transcendental equation and cannot be solved
analytically for ����, one can easily find a self-consistent
solution numerically at fixed values of RW /�D.

Using Eq. �9�, the parallel energy distribution can then
be calculated, namely,

f�E�� = −
1

e

dNb

dVE
, �10�

evaluated at −eVE=E�. In scaled variables, Eq. �10� becomes

f�E�� =
e2

Lp

d�

d�
, �11�

evaluated at �= �E� +e�0�0�� /T. While taking the derivative
of Eq. �9� with respect to � can be done analytically, the
expression is rather complicated, and so the distributions
f�E�� reported here are calculated numerically.

It should be mentioned again that predictions of both �
and f�E�� depend on the assumption stated earlier that par-
ticles with largest E� escape first. Without this assumption,
Eq. �7� is invalid and we can no longer predict the energy
distribution of the extracted beam.

As will be shown below, the shape of f�E�� varies sig-
nificantly as � is changed. In order to provide measures of
the distribution resulting from these changes, it is useful to
calculate the mean and rms energies of the distribution. For
most beam applications it is the total energy E=E� +E� that
is of primary importance. We define the mean energy relative
to the minimum energy of the beam Emin=−eVE as

�Ē = �E� − Emin �12�

and the dispersion in energy �i.e., rms deviation from the
total mean energy� as

�E = ��E2� − �E�2. �13�

In Eqs. �13� and �14�, � � denotes the average of the
quantity over the distribution function f�E� ,E��. These quan-
tities will be calculated below as a function of beam ampli-

tude. In the small beam limit ��→0�, �Ē→2T, and �E
→�2T; while in the dilute charged gas limit �i.e., the non-

plasma limit; �e�0�0���T and Nb=N0�, �E and �Ē are

057105-4 Weber, Danielson, and Surko Phys. Plasmas 16, 057105 �2009�

Downloaded 07 Aug 2009 to 132.239.69.169. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



�3 /2T and �3 /2�T, respectively. The difference between
these two cases is that for the former, only the tail of the
Maxwellian is extracted as opposed to the entire particle dis-
tribution.

IV. COMPARISON BETWEEN THEORY
AND EXPERIMENT

Shown in Fig. 5 are data for the beam amplitude �i.e.,
number of beam particles� Nb extracted as a function of VE

together with two predictions of the theory. The initial
plasma parameters were N=4�108, n=1�109 cm−3, T
=1 eV, and Lp=15 cm. The dashed line is the prediction of
Eq. �9� when � is neglected on the right-hand side �rhs�. This
results in a direct expression for � when ���r� can be ne-
glected during the beam extraction process �i.e., for small
beams�. As seen in the figure, these predictions agree with
the data for small values of Nb �or ��; however they diverge
rather dramatically for larger values of Nb. Because ���r�
acts to inhibit particles from escaping, neglecting it results in
a large overestimation of the number of escaping particles.
The solid line in Fig. 5 is the prediction of Eq. �9� solved
self-consistently with �0�0� adjusted for best fit. In this case,
the predictions and the data are in excellent agreement.

The beam parallel energy distribution f�E�� can be cal-
culated numerically by taking the derivative dNb /d�eVE� of
the data and predictions shown in Fig. 5 to obtain the experi-
mental and predicted values for f�E��. For the curve with �
neglected on the rhs of Eq. �9�, this derivative is identical to
Eq. �3�. The experimental and predicted distribution func-
tions are shown in Fig. 6 for three values of �. As shown in
Fig. 6�a�, for the smallest-amplitude beam ��=0.02�, ���r�
can be neglected and the predictions of Eq. �3� agree well
with the data. As shown in Figs. 6�b� and 6�c�, as � increases,
the predictions of Eq. �3� deviate significantly from the data.

Even for the moderately small value of �=0.1 �Fig. 6�b��,
Eq. �3� does a poor job at predicting f�E�� due to the non-
negligible effect of ���r�. However, as shown in Figs. 6�b�
and 6�c�, a good agreement is obtained with the predictions
using the derivative to the full solution in Eq. �9�, even for
relatively large beams �e.g., �=0.4�. The corresponding val-

ues of �E /T ��Ē /T� for the distributions shown in Fig. 6 are
1.4 �2.0�, 1.5 �2.25�, and 1.8 �3� for �=0.02, 0.1, and 0.4,
respectively.

With this validation of the predictions of Eq. �9�, we
consider further its implications for a wide range of plasma
parameters and beam amplitudes. Equation �9� relates � to �
with the only adjustable constant being the dimensionless
parameter RW /�D. Given RW /�D, one can then solve for � as
a function of �, relating the beam amplitude Nb to the ex-
traction voltage VE for given values of the plasma parameters
�i.e., T, n, and Lp�. In Fig. 7�a�, the solutions in Eq. �9� are
shown for three values of RW /�D spanning a factor of 100 in
this parameter. The data from Fig. 5 are scaled appropriately
and included for reference. As can be seen in Fig. 7�a� and by
examining Eq. �9�, the curves have a noticeable but relatively
weak dependence on RW /�D.

The distribution function can then be obtained from the
solutions for ���� using Eq. �11�. Results are shown in Fig.
7�b� for �=0.4 and the three values of RW /�D shown in Fig.
7�a�. These energy distributions vary markedly in shape as
RW /�D is increased. Useful measures of the changes in the
distribution function are obtained by calculating the mo-
ments �Eqs. �12� and �13�� of the distribution given by Eqs.

�9� and �11�. In Fig. 8�a�, the mean beam energy �Ē /T is
shown as a function of � for a range of RW /�D. This is a
critical parameter for many applications. Also shown in Fig.
8�a� are the measured data for RW /�D=50, which are in good
agreement with the predictions.

In Fig. 8�b� the calculated rms energy spread �E /T is
shown as a function of � for the same values of RW /�D as in
Fig. 8�a�. Experimental data for RW /�D=50 are also shown
and are in good agreement with the predictions. For applica-
tions where good energy resolution is required, it is desirable
to have as small a value of �E as possible. While increasing
the beam amplitude increases �E, for plasmas with smaller
RW /�D, this has a diminishing effect. The reason for this can
be seen by approximating ���0� as that from a flat top and
then expressing it as

� e���0�
T

� � �
1 + 2 ln
RW

�D
− ln 4�1 + ��� . �14�

The increase in the rms spread in �E is related to the number
of particles that is prevented from escaping at r=0 by the
change in plasma potential �� and is only a function of �
and RW /�D. Notice that for a given � as RW /�D increases, so
does e�� /T. Physically, this can happen either by decreasing
�D and thus making the beam smaller, thereby increasing the
beam potential, or by increasing RW which decreases the ef-
fect of the screening image charge from the cylindrical elec-
trode on the beam potential. Increasing �� will prevent more
particles from escaping, thus increasing the energy spread of
the resulting beam �cf. Fig. 7�.

FIG. 5. �Color online� The number of beam particle Nb �solid circles� is
shown as a function of the extraction voltage VE. Here, T=1.0 eV, n0�1
�109 cm−3, and �0�0�=27 V. Also shown are the predictions of Eq. �9�
�—� solved numerically along with the solution �- - -� obtained by neglect-
ing � on the rhs of the equation.
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Note that in Fig. 8, as � increases the spread in E� re-
mains constant, so it is only the parallel energy distribution
that contributes to the increase in the mean energy and the
dispersion �E /T. In particular, the dispersion in the parallel
energies is

�E�

T
=���E

T
	2

− 1, �15�

providing a convenient relation between �E and �E�. This
parameter increases from 0.9 to 1.5 as � increases from 0.02
to 0.4 in the data shown in Fig. 6.

For completeness, the predicted and measured values of
the beam width �b as a function of � are shown in Fig. 8�c�.11

This parameter is critical for beam applications where spatial
resolution is required. Figure 8�c� shows a good agreement

FIG. 6. �Color online� Comparison of the energy distributions for different
beam amplitudes �: �a� 0.02, �b� 0.1, and �c� 0.4. These distributions were
obtained from Eq. �10� using the experimental data and the theoretical pre-
dictions shown in Fig. 5. The experimental conditions and symbols are the
same as in Fig. 5.

FIG. 7. �Color online� �a� Numerical solutions in Eq. �9� �—, - - -, -··� are
shown for values of RW /�D of 5, 50, and 500, respectively. �b� The corre-
sponding distribution functions f�E�� are shown scaled by �e2 /Lp�−1 calcu-
lated with Eq. �11� using the solutions shown in �a�. Data from Figs. 5 and
6�c� ��� are also plotted in �a� and �b�.
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between measured and predicted beam widths and that this
width remains near the minimum value of 4�D for the range
of � values investigated here.

Finally, it is not uncommon in applications to encounter
situations where the magnetic field is changed adiabatically
from some value Bi to another value Bf between the trap and
some other location where the beam is used. In this case, the
quantity E� /B is an adiabatic invariant, and so values of E�

transform as E�f =E�i�Bf /Bi�. Since the total particle energy
remains constant, E� f =E�i+E�i�1−Bf /Bi�. Additionally,
since the magnetic flux is conserved, the beam radius �b will
vary as B−1/2.

V. CONCLUDING REMARKS

Previously, a technique was demonstrated to extract
beams from non-neutral plasmas in Penning–Malmberg
traps, and a simple model was developed to predict the trans-
verse spatial profiles of the extracted beams.10,11 Here, using
an extension of this model, an equation is developed that
predicts successfully the beam amplitudes and energy distri-
butions as a function of the extraction voltage for given val-
ues of the plasma parameters. This expression conveniently
relates � to � with the only remaining parameter being the
scaled electrode radius RW /�D.

These results, when combined with the previous work,
provide quantitative predictions for key beam parameters,
namely, the transverse spatial width, the mean beam energy,
and rms energy spread. These predictions were successfully
verified by experimental measurements. The key results are
that the mean beam energy and the rms energy spread in-
crease monotonically by modest amounts as a function of the
beam amplitude, while the spatial width is approximately
constant near the minimum diameter 2�b=4�D. The major
variation occurs in the shape of the energy distribution func-
tion, which varies markedly with increasing beam amplitude.

This beam-formation technique and the results presented
here can be expected to be useful in a variety of applications.
In particular, in cases where brightness enhancement is de-
sired, such as positron microscopic studies of materials, the
work presented here suggests the following scenario. Posi-
trons from a variety of sources, including electron accelera-
tors, reactors, or radioactive sources, can be accumulated ef-
ficiently in a buffer gas trap and then transferred to a high-
magnetic-field UHV trap for further manipulation and
delivery. Thus trapped plasmas formed can be compressed
radially and cooled then further brightness enhanced by ex-
traction from near the magnetic center line as described here.
Additional brightness enhancement could then be accom-
plished by extraction from the magnetic field, electrostatic
focusing, and remoderation as necessary.29

In other applications, it is the spread in total energy of
the beam �E which is of primary importance. One example
is positron-impact excitation of molecules, clusters and sol-
ids. The methods described here have the potential to enable
high-resolution studies of vibrational and rotational energy
levels. This could be done with either a magnetically guided
beam or an electrostatic beam, each of which has certain
advantages depending upon the particular measurement.15

FIG. 8. �Color online� The quantities of �a� the mean energy �Ē /T= �E
−Emin� /T �i.e., Emin=−eVE�; �b� rms spread in total energy �E /T calculated
using Eqs. �9� and �11�–�13� is shown as a function of � for three values of
RW /�D; and �c� the scaled value of the beam radius �b / �2�D� �—� is shown
as a function of � �from Eq. �5��. Data for plasma parameters given in Fig.
5 ��� are also shown for RW /�D=50. Arrows indicate the value for the
extraction of an entire Maxwellian distribution in the dilute charged gas
limit, �e�0�0���T and Nb=N0. Curves are marked the same as in Fig. 7. See
text for details.
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A powerful technique to study materials is positron an-
nihilation lifetime spectroscopy. In this case, it is desirable to
create bursts of positrons with time durations shorter than
�t�100 ps so that the pulses themselves can be used as the
start signal for timing. In this case, a limiting factor to pulse
compression is the parallel energy spread of the beam �i.e.,
�t���E��.1,21 Using the techniques described here, �E� can
be reduced to approximately the plasma temperature. Use of
a cryogenic plasma then offers the possibility of creating
high-quality short bursts of positrons for PALS and similar
applications.

It is also possible that the techniques described here
could be useful in the formation of cold antihydrogen in the
scheme of combining antiproton and positron plasmas in a
nested-Penning-trap geometry. One potential impediment to
achieving this goal is the velocity imparted to the antiprotons
due to the E�B rotation they experience from the space
charge electric field of the dense positron plasma. Since this
E�B rotation velocity increases proportionally to the dis-
tance from the axis of symmetry, the center-line extraction
method could be applied to one of the species to help miti-
gate this effect.

In Ref. 11, a method was described to produce an elec-
trostatic beam �i.e., a beam in a region where B=0�. Further
narrowing of the transverse extent of the beam can then be
done, for example, using electrostatic focusing techniques.
The energy spread of such a beam will be determined by the
considerations discussed here. In particular, in the example
in Table I of Ref. 11, a value of �=0.1 was chosen to main-
tain a beam of narrow spatial extent. As indicated in Figs.
6�b� and 8�a�, in this case the parallel energy spread corre-
sponds to �E� /T�1 �i.e., the total energy spread is 1
��E /T�2�, which is consistent with the value assumed in
Ref. 11.

For completeness, we note that our previous work to
create cold positron beams6,7 used a distinctly different
beam-extraction technique. Positrons were trapped and
cooled in a Penning–Malmberg buffer-gas trap to a tempera-
ture of 300 K �25 meV�, then the bottom of the confining
potential well was raised in a pulsed manner to extract beam
pulses. In that case, no attempt was made to create a beam of
small transverse spatial extent. Empirically, it was found that
this nonequilibrium extraction protocol produces a Gaussian
energy distribution �i.e., a distinctly different distribution
than those discussed here� with a parallel energy spread of 18
meV, full width at half maximum, while the distribution in
energies perpendicular to the field remains Maxwellian with
an energy spread equal to the temperature of the parent
plasma �25 meV�. The underlying physical origin of this
Gaussian distribution in parallel energies is not currently un-
derstood but is possibly due to the nonequilibrium nature of
the extraction method used. Both that technique and the one
described here can be used to obtain cold beams with energy
spreads of the order of the plasma temperature. The advan-

tage of the technique described here is that one can create
beams with both small transverse size and a narrow energy
distribution.
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