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ABSTRACT OF THE DISSERTATION

Tailored Charged Particle Beams from Single-Component Plasmas

by

Tobin Robert Weber

Doctor of Philosophy in Physics

University of California, San Diego, 2010

Professor Clifford M. Surko, Chair

There are currently many uses of positrons as well as a strong potential for

novel applications on the horizon. Due to the scarce nature of antimatter, positron

research and technology is frequently limited by the ability to collect, confine,

and manipulate antiparticles. Trapping large numbers of positrons as nonneutral

plasmas has proven ideal in this endeavor. This thesis focuses on exploiting the

attractive properties of single-component positron plasmas to develop new tools

for antimatter research.

A Penning-Malmberg trap is used to confine single component electron

(used for increased data rate) plasmas. The trap consists of a cylindrical electrode

structure, centered in the bore of a superconducting magnet. The superconducting

magnet supplies a uniform 5 tesla field that provides radial confinement, while

voltages applied to both ends of the electrode structure confine the plasma axially.

The trap exhibits long confinement times (∼ days) and low plasma temperatures

(T < 20 meV).

The focus of this thesis is the development of a nondestructive technique

to create narrow beams with narrow energy spreads and transverse spatial widths

xi



from single-component plasmas in a Penning-Malmberg trap. This technique is

valuable for effectively and efficiently utilizing trapped positrons. Beams are ex-

tracted by carefully lowering the confining trap potential VC on one end to some

extraction voltage VE. Due to the plasma space charge, beam pulses (�t < 10

μsec) emerge from near the plasma center with radii as small as ρb = 2λD (HW

1/e), and energy spreads �E ∼ T . Through cyclotron radiation and the rotating

wall, the plasma temperature and density is tailored such that beams are narrow

(ρb = 2λD) and cold (�E ∼ T ), resulting in quality beams of a low emittance.

A simple nonlinear model is used to derive equations predicting a wide

range of beam properties from only the plasma parameters and VE. An expression

is first derived for the radial profile of the beam σb(r). A relation for the total

number of escaping particles as a function of VE, Nb(VE), is developed. From this

expression, the full energy distribution of the beam f(E‖, E⊥) is obtained, where

E‖ and E⊥ are the kinetic energies in direction parallel and perpendicular to the

magnetic field. The equations are generically written in terms of the scaled beam

number ξ = e2Nb/LpT , extraction voltage η = (VE − φ0(0))/T , and electrode

radius RW/λD, only. Here, Lp is the plasma length. The resulting expressions are

verified experimentally over a wide range of ξ and RW/λD. General trends in the

RMS energy spread of the beams �E are discussed. The extraction of more than

50 % of a trapped plasma into a train of nearly identical beams is demonstrated.

The techniques described above result in beams in a high (e.g., several tesla)

magnetic field. However for many applications, such as atomic-physics scattering

experiments and the creation of microbeams by electrostatic focusing and remod-

eration, beams in a magnetic-field free region are desired. For these applications,

a technique is described to create high-quality electrostatic beams by extracting

the initial beam from the confining magnetic guide field. The beam is first adia-

batically transferred to a low field region, then brought through a magnetic shield

to a region of zero field by means of a nonadiabatic fast extraction. Once in this

zero field region, the beam is focused to smaller transverse dimensions using an

electrostatic (Einzel) lens. This technique is shown to produce quality electrostatic

beams in an efficient and reproducible way. Potential applications and the pos-

xii



sibilities for further advances in magnetically guided and electrostatic beams are

discussed.

Finally, results of RW compression in low fields (B = 2 T) are briefly

reported. Difficulties encountered while operating the RW in low fields (e.g., B = 2

T) are presented and discussed.

xiii



Chapter 1

Introduction

Although our world is composed exclusively of matter, antimatter is cre-

ated naturally during high energy processes when the energies involved exceed the

rest mass of an antiparticle (E > mc2). With recent progress in antimatter re-

search such as antihydrogen formation, positron (antielectron) microscopy, and the

formation of positron molecule bound states, future prospects for antimatter are

both bountiful and exciting [2, 15, 3]. Unfortunately, current antiparticle sources

(e.g., radioactive isotopes or high energy accelerators) are a major impediment

to progress in these areas as they are seriously limited in both current (J ∼ 100

pA) and energy spread (�E ∼ 1 MeV). Sophisiticated schemes (e.g., moderators)

employed to decrease the energy spread of the positrons are met with major dif-

ficulties as these volatile particles readily annihilate with electrons, their matter

counterpart. Fortunately, a Penning-Malmberg trap has proven an effective tool

to improve positron sources by trapping and cooling antiparticles emitted from

an afore mentioned high energy process [25, 59]. Once large numbers are trapped

and cooled, positrons can be used for a wide variety of applications [25, 59]. This

thesis explores the exciting possibilities for exploiting the wonderful properties of a

Penning-Malmberg trap to create high quality effective positron sources and drive

antimatter research and technology.

1
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1.1 Antimatter applications

The unique charge and mass of a positron make it an attractive tool to

explore basic physics and develop new technological applications. A positron’s

electron mass (me+ = me) and positive charge (qe+ = +e) creates a landscape

of new physical systems to investigate. For example, recently at UCSD we have

discovered positron molecule bound states that occur as a positron induces, and

is attracted to, a dipole polarized molecule [3]. Further, a positron can bind to an

electron, creating an extremely light boson known as positronium. This unique,

short lived boson has opened up a wealth of new physical systems to investigate

including excited positronium states and di-positronium molecules [10, 34, 8].

Additionally, positrons possess the unique and exciting property that they

annihilate with electrons and produce gamma rays. This property creates a tremen-

dous potential for technological applications. One powerful example of this is the

use of positrons to probe surfaces [63, 38]. While ionization, auger emission, and

scattering by a positron beam are effective tools for analyzing a surface, a more

powerful technique is in measuring the annihilation lifetime of the positron in the

material [15]. These lifetimes are incredibly sensitive to small defects in materials,

and easily measured to high accuracies by recording the emitted gamma ray. By

scanning a positron beam across a surface and recording the annihilation lifetimes,

a wealth of information comes available that is inaccessible to a scanning electron

microscope.

Further, there is a serious effort at CERN to create antihydrogen [2]. An-

tihydrogen consists of an antiproton and positron bound together in an atom. By

combining trapped positrons and antiprotons, antihydrogen has been created at

CERN. Presently, the challenge is to cool and trap the atoms with non-uniform

magnetic fields. Once captured, plans are in place to perform spectroscopy on the

atom and measure the atomic energy levels. This measurement would constitute

a extremely precise test of the fundamental CPT symmetry of nature [7].

There are still many exciting positron applications on the horizon. One

exciting possibility is the formation of a Bose-Einstein condensate from positron-

ium [44]. Positronium’s light mass and boson nature allow for the possibility to
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achieve Bose-Einstein condensation at relatively high temperatures (T ∼ 300 K).

The creation of Bose-Einstein condensed positronium brings the possibility of a

gamma ray laser. This could be achieved via stimulated emission of a dense cloud

of positronium atoms into a coherent gamma ray source. While many hurdles most

be overcome before this is a reality, none are insurmountable. Finally, a great po-

tential exists to use positrons to diagnosis plasmas [61]. By injecting positrons into

a known region of a plasma, the particles serve as an electron mass test particles to

measure transport. A measurement could be made by recording the gamma rays

emitted as the positrons reach the wall and annihilate.

Many positron applications exists, and there are great possibilities for the

future. But as you will see in the next section, these applications are limited by

the positron source, which currently has serious restrictions.

1.2 Antimatter sources

The two main challenges facing positron applications are the lack of bright

positron sources and the difficulties involved in working with a particle that annihi-

lates with matter. Because positrons do not readily exist in the world, sources must

be created from pair production (e− and e+) in high energy processes. Examples

of these are collisions of accelerated electrons with a high Z-material [28, 19], inter-

actions with intense laser fields [48], and matter interactions with the bright flux

of high energy photons and neutrons emitted from nuclear fission reactors [31, 26].

Such sources can achieve slow positrons fluxes of at most ≈ 109/sec (J ≈ 100 pA).

Another positron source is radioactive isotopes that emit positrons naturally

during their decay process. This commonly used source is superior to high energy

accelerator and reactor sources in simplicity, cost, and convenience. For many

reasons, a popular source is sodium-22. One reason is that the half life of 22Na is

2.6 years, allowing for continual use over several years. Secondly, over 90% of all

decays in 22Na produce positrons, resulting in high positron outputs. Finally, in

comparison to other radioactive isotopes, 22Na has a low cross section to absorb

positrons. This further increases the outward flux of positrons, as less are lost in
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the sodium by reabsorbtion.

For all sources, positrons are born at high energies (∼ MeV) with large

energy spreads (∼ MeV). This is undesirable and creates many challenges for

applications that require cold beams (e.g., T ≈ 25 meV) with low mean energy

(e.g., E ∼ 50 V). To address this problem, positrons are typically cooled to low

energies (∼ eV) via a moderator, or a solid material that positrons can efficiently

lose energy in while avoiding annihilation in some cases [47]. In typical moderators,

positrons will thermalize through ionization, hole creation, and phonon creation

[33]. One common material used for a moderator is a thin metal film, such as

tungsten. However, ≈ 99.9% of incident positrons are lost to annihilation in these

materials. A superior moderator is one made of a solid nobel gas. Such moderators

have superior efficiencies (> 1% of incident positrons cool and avoid annihilation),

and can produce slow positron beams of sub eV temperatures [46]. For example, by

freezing neon onto the surface of a cold head, a high quality moderated radioactive

source, with low energy positron currents of ≈ 5 × 106/sec (J ≈ 1 pA), has been

achieved [37, 66].

Unfortunately, moderated radioactive sources leave much to be desired. As

mentioned, they are still limited by weak currents and have unusably high energy

spreads (∼ 1 eV) for some applications. However, if positron trapping is used in

conjunction with the moderated source, positron currents can be increased, and

energy spreads lowered. By gathering and cooling large numbers of positrons in a

charged particle trap, an effective bright source of low energy positrons is created.

The Surko group at UCSD has perfected this technique with a Surko buffer gas

positron trap [47]. Although the details of the trap will not be discussed here,

the trap produces bright pulses (108) of low energy positrons (�E ∼ 300 K) that

originate from a moderated radioactive source. This style of trap is used all over

the world, and has led to the discovery of many new facets of positron physics

including positron molecule bound states [3]. Positron molecule bound states, for

example, are unobservable with moderated radioactive positron sources alone.

This thesis will focus on new positron trapping tools to produce high quality,

effective positron sources to help drive current antimatter research.
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Figure 1.1: A generic Penning-Malmberg trap.

1.3 Penning-Malmberg trap: future positron source

For many reasons that will be explained shortly, a Penning-Malmberg trap

is a superior choice for trapping positrons. A generic Penning-Malmberg trap is

illustrated in Fig. 1.1 and consists of a uniform magnetic field through a cylindrical

electrode structure. A positron is confined radially by the magnetic field and axially

by electric fields generated at both ends by applying confinement voltages VC to

the two end electrodes. This is one of the fundamental trapping principles behind

the Surko buffer gas trap.

A truly great body of work has been done investigating electron trapping in

Penning-Malmberg traps [17, 50, 49]. Fortunately, the physics is literally identical

for positrons. By simply flipping the sign of the confinement voltage and magnetic

field, all electron results apply identically to positrons. One landmark result from

this extensive work is that by injecting large numbers of electrons into the trap,

it is possible to create a trapped nonneutral plasma (plasma of a single sign of

charge) in thermal equilibrium [50]. In equilibrium, these nonneutral plasmas are

uniform density rigid rotors, with a frequency that is proportional to the density

n0. The plasma rigidly rotates from the E × B drift motion resulting from the

large radial electric fields generated by the column of nonneutral charge.

Perhaps the most remarkable property of these trapped plasmas is that

they are confined in a state of thermal equilibrium [50]. Specifically, they relax

into thermal equilibrium in the rotating frame of the plasma. Potential surfaces
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of constant radius contain a local maxwellian velocity distribution in the rotating

frame of the plasma. This amazing property is exclusive to nonneutral plasmas. It

is impossible to confine a neutral plasma in thermal equilibrium using electric and

magnetic fields, a fact that has plagued magnetic confinement fusion for decades.

All of these properties make the Penning-Malmberg trap a perfect antimat-

ter trap and allow for the creation of high quality effective positron sources. The

latter point refers to the potential to gather a large number of positrons into the

trap, allow the particles to cool, then extract the particles in one bright pulse.

This idea is the main focus and motivation of this work.

1.4 Experimental overview

All the work presented here was done on the Penning-Malmberg trap illus-

trated schematically in Fig. 1.2. This trap is known as the “High Field trap” for

its high magnetic field of 5 T generated by a superconducting magnet. In Fig. 1.2,

note the presence of a cylindrical electrode structure and uniform magnetic field.

These are the two stables of a Penning-Malmberg trap. In this work, we will be

using a cylindrical coordinate system (r, θ, z) where the z-axis corresponds to the

axis of cylindrical symmetry of the electrodes. As mentioned in Sec. 1.3, parti-

cles are confined radially by the uniform magnetic field, and axially by electric

fields that are generated at both ends by confinement voltages VC applied to end

electrodes.

The large trapping magnetic field of the HF trap has a number of beneficial

properties. In addition to increasing the plasma confinement time, the cooling

time of the particles τc decreases dramatically as τc ∝ 1/B2 [5, 4]. This is because

the plasma primarily cools via cyclotron radiation of the charged particles. In the

5 tesla field, the plasma cooling time is approximatley τc ≈ 150 msec. There are

many great benefits to short cooling times. In addition to decreasing the time

required to wait for particles to cool and then be used, the large cooling power will

routinely dominate any external heating sources, allowing the plasma to cool to

the temperature of the walls. When strong external heating sources are present,
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Figure 1.2: (a) Schematic diagram of the experimental arrangement and (b) a
CCD image of the areal z-integrated plasma density distribution σz(r, θ) for an
equilibrium “flat-top” plasma.

like from the “Rotating Wall” discussed shortly, large cooling powers are critical.

The main diagnostic tool used on this device is a CCD camera and phosphor

screen located outside the trap. By dropping VC to zero on one end, the plasma

exits the trap by streaming along field lines, and collides with the phosphor screen

emitting light. This light is imaged using the CCD camera. Because the plasma is

in a highly magnetized state, the particles stay glued to their respective field lines

thus making the images z-integrated density profiles of the plasma inside the trap.

An example of a z-integrated plasma profile σz(r, θ) is shown in Fig. 1.2. Note

that for plasmas with large aspect ratios (Lp/Rp � 1, Lp being the plasma length,

Rp the plasma radius), the plasma is approximately z-independent with flat ends.
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With this property, one can simply divide the z-integrated plasma density profile by

LP to approximately obtain the 3 dimensional density profile of the plasma inside

the trap n(r, θ, z) = σz(r, θ)/LP . Although this is a destructive measurement, the

trap exhibits excellent shot to shot reproducibility (ΔN/N ≤ 5 %), allowing for

multiple measurements of a given plasma configuration.

Another exciting property of this trap is that the electrodes are thermally

connected to a cold head and have the potential to be cooled to as low as 10 K.

This creates the possibility of a trapped cryogenic positron plasma if the plasma

is quiescent enough to cool to the temperature of the surrounding electrodes. One

difficulty with cooling plasmas to cryogenic temperatures is that the cooling power

(cyclotron cooling) is proportional to the plasma temperature T [5]. To cool a

trapped plasma, cyclotron cooling has to exceed any external heating sources.

Thus, cold plasmas are more vulnerable to external heating sources when trying

to, for example, cool to the wall temperature. As a result, great care must be

taken in isolating the plasma from any external heating sources when cooling to

temperatures T < 25 meV. Previously, groups have achieved liquid helium tem-

perature trapped plasmas by submerging an entire trap in a dewar of liquid helium

[5]. In this way, the plasma is completely isolated from any external non-cryogenic

black body radiation. Unforunatley, this is not the case here. An unavoidable

external heating source here is room temperature black body radiation that enters

from the ends of the trap. At this point, it remains unclear if the trapped plasmas

here can be cooled to cryogenic temperatures. On this trap, plasmas have been

cooled to T < 200 K. At these temperatures, the plasma temperature becomes

very difficult to measure, so uncertainty remains as to how far below 200 K the

plasma is. However, the important question is if external heating sources are keep-

ing the plasma from cooling below 200 K, is it possible to eliminate them? Until

these questions are answered, the effectiveness of this experimental arrangement

to achieve cryogenic plasmas remains an unknown.

Lastly, this trap has a wonderful tool called the “Rotating Wall” (RW),

illustrated schematically in Figs. 1.3. The RW consists of one electrode divided

into 4 electrically isolated sectors. Each sector receives a different phase of a time
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Figure 1.3: Schematic of the sectored RW in the HF trap.
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varying, sinusoidal voltage. The phase of the sinusoid is fixed to match the θ

value at which the center of the respective sector resides. The net result is that

in the trap, the plasma sees an azimuthally asymmetric potential that appears to

be rotating azimuthally in time, hence the name, “Rotating Wall”. In this work,

the ”strong drive” regime will be exploited [13]. The strong drive regime occurs

when the voltage of the applied sinusoid VRW is sufficiently large (VRW ≈ 1 V) such

that the plasma spins up or down to match the frequency of the applied sinusoid.

Because frequency is proportional to density, this results in either a compression or

expansion of the plasma. An example of this tool in use is shown in Fig. 1.4, where

the plasma is compressed up by a factor of 10. Here a slice of constant θ from

σz is plotted. Note that this tool varies the density in an in-situ, non-destructive

manner. This is beneficial for two major reasons. One is that it counteracts the

natural expansion of the plasma due to unavoidable trap asymmetries, allowing

the plasma to be confined indefinitely (τ ∼ days). The other advantage of the RW

is it allows for direct control of the plasma density when performing experiments.

The experiment just discussed is an excellent trap for positrons. Large

numbers of positrons (1010) have been confined for long periods of times (τ ∼
days) and at low temperatures (T < 20 meV). As a result, a great potential exists

for these traps to serve as effective positrons sources that could help drive positron

research [59]. However, most positron applications require more than just large

numbers of trapped positrons. Typical positron applications, both current and

future, requires or will require high quality positron beams of small spatial width,

low energy spread, high brightness, and good reproducibility. The question this

work will address is if these HF Penning-Malmberg traps are capable of providing

such high quality beams.

A short aside before we continue: As mentioned earlier, in the Surko lab we

have a wonderful positron source known as the Buffer Gas Trap. Using this trap,

we are very confident in our ability to load positrons into the HF trap. However,

in this work we will only trap electrons for increased data rate, and so as to leave

the Buffer Gas trap free for other positron research.
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Figure 1.4: Example of plasma compression by a factor of 10 using the RW.
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1.5 Outline of the dissertation

Chapter 2 will present a technique to extract high quality, tailored beams

from trapped nonneutral plasmas. A simple model of the beam creation process

is introduced and used to derive expressions for the transverse profile of the beam

σb(r). Predictions are verified using electron plasmas in the HF trap. The ability

to extract multiple beams from the trapped plasmas and efficiently use an entire

population of trapped particles is also demonstrated.

Next, Ch. 3 will address the energy spreads of the beams. Using the same

simple model of the beam creation process, the full beam energy distribution func-

tion will be derived. Additionally, an expression will be developed for the total

number of beam particles, given only the plasma parameters and extraction volt-

age VE. These predictions will also be verified on the experiment using electron

plasmas. Beams will be shown to have energy spreads on the order of the parent

plasma �E ≈ T .

Chapter 4 will describe a technique to create electrostatic beams, or beams

in a magnetic field free region, from plasma originating in a high magnetic field.

Beams are extracted from the HF in two stages: A slow reduction in the field,

followed by a fast extraction to zero field. A full theoretical treatment will be

presented, deriving the modifications to the beam energy and spatial distributions

from the magnetic extraction process. Once extracted from the field, the beam is

focused with an Einzel lens to smaller transverse dimensions.

Finally, Ch. 5 briefly reports the results of RW compression in low magnetic

fields (e.g., B = 2 T), followed by a short summary and conclusion in Ch. 6.



Chapter 2

Beam extraction 1

This Chapter describes a protocol for generating high quality magnetized

beams from plasmas in a Penning-Malmberg trap. The physics of the beam cre-

ation process is illustrated through a simple model from which many properties of

the beams are derived. These predictions are all verified using electron plasmas on

the device discussed in Sec. 1.4.

2.1 Experimental procedure

The beam extraction method is simple and illustrated in Fig. 2.1. By

carefully lowering the confinement voltage VC on one end to some extraction voltage

VE, particles with sufficient energy escape. These escaping particles constitute the

beam. Because the equilibrium plasma potential φ0(r) is quadratic in r, escaping

particles come exclusively from the plasma center where |eφ0(r)| is the largest [53].
A cartoon is shown in Fig. 2.2 to further illustrate the extraction process.

Notice that while electrons at the center do not possess enough energy to pass over

the confinement potential, when VC is lowered on one end to VE, some particles

escape axially on that side. To reiterate, the escaping particles are the ones near

r = 0, where the potential energy of the charged particles is the largest. This is

illustrated in Fig. 2.2, where an image of the plasma before and after the beam

1This Chapter is based upon the paper, T. R. Weber, J. R. Danielson and C. M. Surko, Phys.
Plasmas, 012106 (2008). Mr. Weber was the lead scientist on this work.

13
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Figure 2.1: Simplified schematic diagram of the technique used to extract beams
with small transverse spatial extent.

extraction process is shown. Notice the small divot or hole in the center of the

plasma. This represents a depleted region where the escaping beam particles have

left.

Once out of the trap, the beam is measured in two ways. The main diag-

nostic is using the CCD camera and phosphor screen to image the beam in the

same way that the plasma is imaged. This is accomplished by allowing the beam

to collide with the phosphor screen, then imaging the emitted light creating z-

integrated transverse beam profiles σb(r). This z-integrated quantity is assumed

to be azimuthally independent, therefore θ is suppressed. The second type of mea-

surement is to record the voltage signal on the aluminum coating of the phosphor

screen as the beam collides there. This voltage is related to the total number of

beam particles Nb through the capacitance of the system. By taking the time

derivative of this signal, the beam current is additionally obtained. Figure 2.3

illustrates examples of these two beam measurements. In Fig. 2.3, note that the

beam is smaller than the width of the parent plasma, and occupies a temporal
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Figure 2.2: (a) Schematic diagram of the beam extraction process and (b) camera
images of the areal z-integrated plasma density σz(r, θ) for a flat top plasma before
beam extraction (above) and 10 μ sec after beam extraction (below); also shown
are the corresponding radially averaged slice distributions σz(r).
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width of ≈ 5 μsec.

As illustrated in Fig. 2.3, the extraction voltage is set by a voltage pulse of

width �t ≈ 10 μsec. This time is determined as the minimum time required for all

escaping particles to exit the trap. Because particles are streaming axially along

field lines and bouncing off the confining potential barrier, a rough lower limit for

this pulse time is Δt ≥ τb ≡ 2Lp/vt, where τb is the “bounce time” required for

an electron with the thermal velocity vt = (T/m)1/2 to travel the distance 2Lp.

Here, the minimum pulse width is determined empirically as the minimum time

required to maximize the signal on the phosphor screen. The extraction window

is minimized subject to this constraint to avoid instabilities, radial transport or

collisions that might occur during the beam extraction process. The upper limit

on this window to avoid these effects is discussed in more detail in Sec. 2.4. As seen

in Fig. 2.3, the entire current pulse occurs within the extraction window, verifying

that no escaping particles remain in the trap.

The time dependence of the beam current I(t) in Fig. 2.3 is of interest

to applications where pulses with a short time duration are required [11, 40, 27].

In other applications, however, the time dependence of the beam pulse is not

important [3]. The beam extraction procedure described here produces beams

that exit the trap with an initial temporal width Δt0 roughly equal to the bounce

time of a typical escaping particle (i.e., Δt0 ≈ 2Lp/vt for an exiting particle with

axial velocity vt). For the beams studies here, 2Lp/vt ≤ 1 μsec. Because these

beams contain particles with a distribution of axial velocities, the pulse width will

increase as the beam travels away from the trap. This is likely the dominant effect

responsible for pulse width shown in Fig. 2.3.

Note that no particles are lost in this extraction process. It is a non-

destructive process that conserves particles. This is an important feature for anti-

matter applications where it is of critical importance to conserve what few particles

one actually collects.
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Figure 2.3: Examples of two beam diagnostics: (a) image of the beam with the
CCD camera and phosphor screen and (b) measurement of the total charge on a
collector screen. Here, a time derivative of the signal, or beam current, is plotted
along with the confinement potential VC(t) (- - -). The value of VE (· · · ) for this
extraction is also shown.
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2.2 Theoretical description

In this section, expressions are developed for the areal distribution σb(r) of

electron beams extracted from a Penning-Malmberg trap. To apply these results

to positron beams, change e to −e in the formula below. A final reminder: this

work assumes z and θ independence so all quantities are written in terms of r only.

For a charged particle in a nonneutral plasma in equilibrium inside a Penning-

Malmberg trap, the minimum velocity parallel to the magnetic field v‖min that a

particle requires to escape is set by the escape condition,

1

2
mv2‖ − eφ0(r) ≥ |eVE|, (2.1)

where φ0(r) is the equilibrium plasma potential found in Ref. [53]. This expression

is simply an energy balance equation relating the condition for when a particle

has sufficient kinetic and potential energy to pass over a potential hill of height

|eVE|. One small layer of complexity is now added. As particles begin to escape,

the plasma potential changes because of the loss of charged particles. In fact,

the plasma enters a series of complicated nonequilibrium states as more and more

particles exit the trap. Generically, the magnitude of the plasma potential lowers,

acting to shut off the extraction process by decreasing the potential energy of

the particles. This acts to increase the effective potential barrier seen by the

plasma particles (see Fig. 2.2). But the details of this changing plasma potential

complicate the expression for v‖min as you must write the changing nonequilibrium

plasma potential φ(r, θ, z, t) rather then the simple and well known φ0(r). However,

if we assume that the fastest particles escape first, the escape condition is defined

by the plasma potential at the end of the extraction process, which we write as,

φ(r) = φ0(r)−Δφ(r), (2.2)

where �φ is the change in the plasma potential from the beam. The justification

for this is seen by observing that if the fastest particles escape first, the last particle

to escape will be at v‖min by definition. This final escaping particle will then see

the plasma potential at the end of the extraction process φ0(r) − Δφ(r). The
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assumption that the fastest particles escape first is validated by the fact that

the fastest particles cover the most axial distance in some fixed window of time.

With this assumption, Eq. 2.2 is then the appropriate plasma potential to use to

define the minimum escape velocity. Using this potential, the new escape condition

becomes,

1

2
mv2‖ − e[φ0(r)−Δφ(r)] ≥ |eVE|. (2.3)

Note that �φ(r) obeys the Poisson equation,

∇2 [Δφ(r)] = 4πeΔn(r), (2.4)

where Δn(r) is the change in plasma density after beam extraction, and related to

the z-integrated radial beam profile by σb(r) = LpΔn(r), from the assumption of

z-independence. To calculate the beam profile, one simply integrates over all the

particles in the plasma distribution function that satisfies the escape condition of

Eq. 2.3,

σb(r) = 2Lp

∫ ∞

v‖min(r)

f(r, v‖)dv‖

= 2Lpn0(r) erfc

(
v‖min(r)√

2vt

)
, (2.5)

where f(r, v‖) is assumed to be a Maxwellian velocity distribution at temperature,

T ;

v‖min(r) =

√
− 2e

me
[VE − φ0(r) + Δφ(r)] (2.6)

is the smallest velocity of escaping particles from Eq. 2.3; and erfc(x) is the com-

plementary error function with argument, x = v‖min/
√
2 vt.

A quick word on f . In equilibrium, the plasmas are uniform density, with

a Maxwellian velocity distribution in the rotating frame of the plasma (i.e., in

thermal equilibrium in the rotating frame). Each surface of constant radii is a

surface of constant electric potential. As you move outwards in the plasma, the

potential of the particles decreases. In this manner, the potential energy of the

particles drops with increasing r, making v‖min radially dependent.
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Assuming an ideal “flat-top” density distribution (i.e., n0 = [N0/π(Rp)
2Lp]),

the initial space charge in the plasma is [53]

φ0(r) = −eN0

Lp

[
1− r2

R2
p

+ 2 ln

(
RW

Rp

)]
. (2.7)

Most beams studied here are moderate enough in size to be in the Gaussian

beam limit, where the complementary error function in Eq. 2.5 is approximated

as,

erfc(x) ≈ exp(−x2)√
π x

. (2.8)

This approximation if valid for values of x > 2. Now, using this approximation,

evaluating Eq. 2.5 with Eqs. 2.6 and 2.7 yields,

σb(r) ≈ σb0 exp

[
−
(

r

2λD

)2
]
exp

[
eΔφ(r)

T

]
, (2.9)

where λD is the Debye length of the unperturbed plasma, and

σb0 ≈ A exp
[ e
T
(VE − φ0(0))

]
, (2.10)

with A (approximately) a constant. For |eΔφ/T | � 1, as is the case for a small

beam, Eq. 2.9 becomes,

σb(r) ≈ σb0 exp

[
−
(

r

2λD

)2
]
. (2.11)

This is what will be defined as the small beam limit, where �φ is neglected and the

beam width ρb is equal to ρb = 2λD. As discussed above, σb(r) is the z-integrated

radial distribution that would be measured when the extracted beam impinges on

a collector plate. At this point, A in Eq. 2.10 is not defined, making Eqs. 2.9 and

2.11 only proportional to the beam radial profile. While this will presently appear

as a limitation of the theory, an expression for the total number of beam particles,

or σb0, will be derived in Ch. 3.

For larger beams where the Gaussian beam approximation (c.f., Eq. 2.8)

made in Eq. 2.9 is still valid but the small beam approximation made in Eq. 2.11 is
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not, �φ is no longer negligible and must be addressed. To deal with this term, the

change in potential from a Gaussian beam of width ρb is calculated analytically

and written as,

�φ(r) =
Tξ

e

[
2 ln

r

RW

+ Γ

(
0,

r2

ρ2b

)
− Γ

(
0,

R2
W

ρ2b

)]

≈ �φ(0) + ξ
T

e

r2

ρ2b
, (2.12)

where the parameter ξ is,

ξ =
e2Nb

TLp

. (2.13)

Equation 2.12 has been tailored expanded to 2nd order about r = 0, and ρb is

the half width to 1/e, or the radial spread of the Gaussian. The 2nd order Taylor

expansion is reasonably good over the region in the plasma where the beam is

extracted, or |r/ρb| ≤ 1. As will be seen later, the approximation in Eq. 2.12 still

works as an effective approximation for �φ(r) when beams become non-Gaussian

or Eq. 2.8 is no longer valid. One reason for this, as will be seen, is non-Gaussian

beams here typically resemble uniform density flat-top beams. For these flat-top

beams, �φ(r) is exactly equivalent to a quadratic, or the approximation written

in Eq. 2.12.

In Eq. 2.9, although the magnitude of e�φ/T will alter the total amount of

extracted charge, it is only the variation in e�φ/T across the beam profile that is

important in changing the transverse beam shape. In this sense, the key parameter

in Eq. 2.12 is the dimensionless parameter ξ. This parameter is equal to the change

in �φ across the beam (in terms of T ) or ξ = �φ(ρb) − �φ(0). Note that ξ is

simply the beam amplitude Nb scaled to the plasma parameters. This parameter

is key because when inserting Eq. 2.12 into Eq. 2.9, the areal density becomes,

σb(r) ≈ σb0 exp

[
−
(

r

2λD

)2

+ ξ

(
r

ρb

)2
]
, (2.14)

where σb0 contains the radius-independent term arising from Δφ(0). Since ρb is

defined as the half-width to 1/e (i.e., σb(r = ρb) = σb0e
−1) the beam width is,
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ρb ≈ 2λD(1 + ξ)1/2. (2.15)

Equations 2.14 and 2.15 predict a Gaussian beam just as with Eq. 2.11, but now

ρb is ≥ 2λD and determined by ξ. The small-beam condition required for the

validity of Eq. 2.11 can now be expressed as simply ξ � 1. Since Eq. 2.13 can

also be written as ξ = (Nb/N0)(Rp/2λD)
2, this condition places an important

practical constraint on the number of plasma particles that can be extracted in a

small-beam, namely Nb/N0 � (2λD/Rp)
2.

Equations 2.14 and 2.15 describe well a range of beam profiles observed in

experiment. However, when ξ > 1 non-Gaussian beam profiles are observed. In

this case, numerical solutions of Eq. 2.4 and Eq. 2.5 can be used to predict the

measured profiles, even when Nb ≈ N0. As will also be seen, Eq. 2.15 remarkably

remains valid for all beam sizes.

2.3 Description of the experiment

The Penning-Malmberg trap used for these experiments is shown schemat-

ically in Fig. 1.2. It consists of a series of hollow conducting cylindrical electrodes

0.5 m in total length with radii RW = 1.27 cm. A uniform magnetic field of B = 4.8

T lies parallel to the z-axis of cylindrical symmetry of the electrodes. For a more

complete description of the apparatus, see Ch. 1.

Plasmas are created using a standard electron gun to fill a potential well

of variable depth (Vfill ∼ + 50 V). The magnetic field provides radial confinement

while axial confinement is achieved by the application of confinement voltages

VC = −100 V to electrodes on both end of the trap. The plasma length Lp is

roughly the distance between the confining electrodes.

In equilibrium, the plasma has a constant density n0 (i.e., a flat top radial

distribution) and undergoes E x B rotation at a frequency set by n0 [13, 12].

The plasma temperature T is set by the balance between heating sources (e.g.,

background drag and rotating wall heating) and cyclotron cooling (τc = 0.16 s).

Unless otherwise noted, for the plasmas described here: N0 ≈ 4 × 108
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electrons; n0 ≈ 1 × 109 cm−3; Rp ≈ 0.1 cm; Lp ≈ 15 cm; and T ≈ 0.05 eV.

For these plasmas, the Coulomb collision time (τee < 1 ms) is rapid compared to

τc, thus ensuring that the plasmas are constantly in states of thermal equilibrium,

even while cooling [12]. Plasmas here exhibit excellent shot-to-shot reproducibility,

with ΔN0/N0 ≤ 1%.

Density and total charge are measured using an aluminum-coated phosphor

screen located adjacent to one of the ends of the trap (see Fig. 1.2). The confining

potential VC on electrodes at one end of the trap is lowered and exiting electrons

are accelerated into an aluminum screen which is biased to a positive electric

potential. For low screen potentials (e.g., 25 V), the total charge is measured,

giving the number of electrons exiting the trap. When VC is lowered to 0 V,

this number is equivalent to N0; when lowered to VE, this number is equivalent

to Nb. At much higher potentials (e.g., 5 kV), the exiting electrons penetrate

the aluminum coating and produce light in the phosphor that is imaged using

a CCD camera. When VC is lowered to 0 V, this image is the two-dimensional

(i.e., areal) z-integrated density distribution σz(r, θ) of the trapped plasma, where

n(r, θ) ≈ σz(r, θ)/Lp, and is independent of z. For a typical situation described

here with rotational symmetry, σz(r, θ) is written as σz(r) with the θ dependence

suppressed. Plots such as Fig. 2.3 include values r < 0 to represent measurements

taken along a major chord through the circular distribution. When VC is lowered

to VE, the image is then equivalent to the radial beam profile σb(r).

The plasma temperature is varied using the technique described in Ref.

[5]. It consists of repeatedly compressing and expanding the plasma by changing

Lp, thereby heating the plasma through Coulomb collisions. The temperature is

determined by a time-resolved measurement of the number of electrons escaping

from the trap while VC at one end is slowly lowered [18].

The plasma density is varied using the RW technique [13, 12]. As discussed

in Sec. 1.4, phased sine waves applied to a sectored electrode are used to generate

a rotating electric field with azimuthal mode number mθ = 1. These fields produce

a torque on the plasma, thus providing a way to compress or expand the plasma

in a non-destructive manner. See Ref. [13] for details.
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2.4 Single beam extraction

As discussed above, to extract a beam from a trapped plasma, VC is raised

at one end of the trap from −100 V → VE ≈ φ0(0) for a brief extraction time

�t ≈ 10 μs. Using this technique, small beams (ξ < 0.1) were extracted over a

factor of approximately 40 in both density (0.06 < n0 < 2.2 × 1010 cm−3) and

temperature (0.05 < T < 2 eV). Figure 2.4 shows examples of σb(r) and the

corresponding Gaussian fits over a wide range of T and n0, respectively. However,

due to extra heating during RW compression, not all temperatures were achieved at

all densities. The observed beam distributions are seen to be in excellent agreement

with the Gaussian form of Eq. 2.11.

From the Gaussian fits, the beam width ρb is found for each extracted

beam. Data for ρb over a factor of 30 in λD are shown in Fig. 2.5, and compared

with the predictions of Eq. 2.11. As shown in Fig. 2.5, the average of all the data

< ρb > /λD = 2.2 ± 0.2 is in good agreement with the predicted value of 2.0 in

Eq. 2.11. The small discrepancy between data and the predictions of Eq. 2.11 is

currently unexplained.

The data in Fig. 2.4 show that at constant T , the width of an extracted

small beam is determined by λD and hence by the plasma density n0. By varying

n0 in a non-destructive manner without particle loss using the RW, the extracted

beam can be transversely focused. This focusing procedure is illustrated in Fig. 2.6,

where n0 is increased so as to narrow the resulting extracted beam. Here, since

λD ∝ 1/
√
n0, as the density is increased by a factor of 30, the measured beam width

drops by a factor of 6. Note that in addition to decreasing the width, the beam

brightness is increased dramatically by a factor of 25. Further, the energy spread

remains constant as the plasma temperature changes only marginally which, as

will be shown in Ch. 3, approximately sets the beam energy spread. Thus, this

RW focusing technique allows one to decrease the beam width, increase the beam

brightness, and keep the energy spread constant all in a nondestructive way. This

technique is therefore superior to any aperture or electrostatic focusing technique

which would decrease the beam width at the cost of either losing particles while

holding brightness constant, or increasing the beam energy spread [32].
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Figure 2.4: Small beam profiles σb(r): (a) n0 ≈ 1×109 cm−3, and T ≈ 1 eV (•),
0.2 eV (�), 0.04 eV (�). (b) T ≈ 0.1 eV, and n0 ≈ 1×109 cm−3 (•); 6.5×109 cm−3

(�); 1.2×1010 cm−3, (�). Gaussian fits (· · · ) are also shown. ξ < 0.1 for all beams.
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Figure 2.5: Log-log plot of ρb vs. λD along with the prediction ρb = 2λD from
Eq. 2.11 (—). The average 〈ρb/λD〉 = 2.2± 0.2 for all data (· · · ) is also included.
For all beams, ξ < 0.1.
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Figure 2.6: Radial distributions σb(r) (�) for beams extracted from a plasma (a)
before (n0 = 0.65 × 1010 cm−3), and (b) after RW compression (n0 = 2.2 × 1010

cm−3). The initial plasma profiles σz(r) (•) are also shown. Here Lp ≈ 22 cm, and
T ≈ 0.1 eV.
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As mentioned above, Eq. 2.11 is valid only for ξ � 1. If ξ exceeds this limit,

the extracted beams may exhibit radial distributions that are described more accu-

rately by Eq. 2.14, which describes a Gaussian beam with a width that is dependent

on ξ. But in what regime are Eqs. 2.14 and 2.15 accurate? Experimentally, as Nb

is increased to intermediate values 0.1 < ξ < 1, the beams remain Gaussian and

well described by Eqs. 2.14 and 2.15. As Nb increases further to ξ > 1, the profiles

become non-Gaussian and ultimately evolve to “flat-tops”, with steep edges and

flat maximum that are no longer well described by Eq. 2.14. Remarkably, as will

be shown later, Eq. 2.15 remains valid for extracted beams of any ξ.

The validity of Eq. 2.14 is illustrated in Fig. 2.7, where beam profiles are

plotted over the entire range of Nb from two plasmas with the same density (n0 ≈
1 × 109 cm−3) but different temperatures, along with the theoretical predictions

of Eq. 2.14. For the three smallest beams (ξ < 1), the predictions of Eq. 2.14 are

plotted as dotted lines, showing excellent agreement with the measured profiles.

For the three larger beams (ξ > 1), the profiles become non-Gaussian and are

no longer described by Eq. 2.14. There, predictions are obtained by numerically

solving Eqs. 2.4 and 2.5 using the measured values for n0(r), T , Lp and Nb. These

predictions, shown as solid lines in Fig. 2.7, are in reasonable agreement with the

measurements, demonstrating that the profile of an arbitrary sized beam (i.e., all

beams such that 0 < Nb ≤ N0) can be predicted numerically.

From the data shown in Fig. 2.7, ρb can be obtained over a broad range

in Nb. Figure 2.8 shows the results of these measurements together with the pre-

dictions of Eq. 2.15 and numerical solutions to Eqs. 2.4 and 2.5. The measured

values of ρb are in good agreement with the predictions of Eq. 2.15 with no fit-

ted parameters. Remarkably, agreement is seen over the full range of Nb. As

mentioned above, this is not expected for ξ > 1 because there the beam profiles

depart from the Gaussian shapes predicted by Eq. 2.14. Thus, the agreement

with Eq. 2.15 shown in Fig. 2.8 is fortuitous. The details of why this expression

works are unimportant, but it functions as a convenient expression that makes

a good approximation of the beam width over the entire range of possible beams

(Nb = 0 → N0). The beam width predicted by the numerical solutions is in similar
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Figure 2.7: Profiles σb(r) of extracted beams: (a) T ≈ 1.0 eV, ξ ≈ 0.1, 0.3, 0.5,
1.0, 1.9, 2.8; and (b) T ≈ 0.2 eV, ξ ≈ 0.1, 0.3, 0.5, 2.2, 5.2, 11. In both (a) and
(b), the three smallest beams are fit (· · · ) to Eq. 2.14, and the three largest beams
are fit (—) to numerical solutions to Eqs. 2.4 and 2.5. The initial plasma profile
σz(r) is shown (�), as is the fit (- - -) used in the numerical solutions.
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good agreement with the data. This is expected as none of the assumptions made

in Sec. 2.2 were used in the calculations.

The extraction of multiple beams from the same plasma is an important

practical goal (see Sec. 2.5). If Penning-Malmberg traps are to be used for positron

applications, it will be critical to efficiently use all of the trapped particles because

of the long times required to gather them initially. Extracting multiple beams is

most easily accomplished if the plasma returns to equilibrium after each extraction.

If this is the case, it is much easier to achieve reproducibility and to tailor beam

pulses using the theory and tools found in this thesis. To investigate this issue, the

plasma response following a single-beam extraction was investigated by recording

the areal plasma density σz(r) at discrete time intervals after the extraction of a

beam. Four such distributions are shown in Fig. 2.9.

Shortly after the extraction and at t = 100 μsec, the profile is the initial

“flat-top” profile with a “hole” in the center where the extracted beam particles

were removed. By 250 μsec, the hole has moved away from the plasma center,

breaking the typical θ symmetry found in σz(r, θ). From the time evolution of

σz(r, θ) (not shown), the density hole is seen to rotate around the center axis of

the plasma, as well as drift radially outward. Similar dynamics are discussed in

Ref. [16], in which a similar density hole was created in an electron plasma and dis-

placed slightly off-axis to produce an unstable diocotron mode. In both situations,

the density hole is convected around the plasma center with a radial location that

grows exponentially with time. Here there is no initial off-axis displacement of the

density hole, and so the radial displacement does not reach significant amplitudes

until times > 100 μsec. However by only 500 μsec, the plasma has fully recovered

to equilibrium (the plasma has fully thermalized, as τee ≈ 20 μsec) via growth of

the unstable diocotron mode..

Beneficially, this instability does not interfere with the beam extraction

process, which occurs in less than 10 μs. Further, for beams with ξ < 1, the

instability decreases the plasma recovery time, thereby aiding in the extraction of

multiple beams. Without the instability, the plasma would be forced to return

to equilibrium via collisional transport in which particles take steps on the order
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Figure 2.8: (a) Beam width parameter ρb plotted vs. Nb/N0 for T ≈ 1.0 eV (•),
and 0.2 eV (�). Predictions (—) from Eq. 2.15 with no fitted parameters, and
(· · · ) numerical solutions to Eqs. 2.4 and 2.5. Arrows correspond to beams with
ξ = 1. (b) Data from (a) plotted as (ρb/2λD)

2 vs. ξ, showing all data lies on a
single curve (—) given by Eq. 2.15.
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Figure 2.9: Profiles σz(r) are shown at four times after the extraction of a beam.
For the data at 250 μs, the major chord along which σz(r) is measured is chosen
to pass through the center of the off-axis hole. Also shown (· · · ) is σz(r) before
the extraction.
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Δr ∼ rc ≈ 0.1 μm, where rc is the electron gyro radius. This process would

undoubtedly take significantly longer then 500 μs, as no noticeable radial transport

is observed in this time in Fig. 2.9. However, for larger beams (i.e., ξ > 1), other

types of plasma instabilities occur (in times > 100 μs) that increase the plasma

re-equilibration time and, in some cases, prevent the plasma from returning to a

“flat-top” equilibrium state.

These results indicate that, for appropriate sized beams, extraction times

as long as 100 μsec are possible without violating the assumptions of Sec. 2.2. This

is verified in Fig. 2.10 where Nb is plotted for beams extracted on two times scales:

the typical 10 μs extraction, and a longer extraction over ≈ 200 μs. The long time

scale extraction is performed by a linear ramp of VC from −100 → 0 V at a rate

of 0.015V/μs. In this “slow” extraction, unlike the normal beam extraction, both

VC (equivalent to VE) and Nb are measured continuously as a function of time. As

seen in Fig. 2.10, the two methods extract identical size beams when VC = VE.

This, in turn, provides evidence that no significant radial transport or collisions

occur during the longer extraction time. The smooth increase in Nb over the first

100 μsec of the slow ramp (indicated by the arrow in Fig. 2.10), further illustrates

the stability of the plasma on these time scales. As also shown in Fig. 2.10, for

small Nb, the slow extraction data can be fit to an exponential (i.e., Eq. 2.10).

This is used to measure plasma temperatures in the present work [5, 18].

2.5 Extraction of multiple beams

As mentioned previously, for practical applications it is desirable to make

efficient use of the plasma particles by extracting multiple beams before refilling

the trap. One way to do this is to extract a beam at some extraction voltage VE;

wait for the plasma to reach a new equilibrium; then extract another beam at VE +

ΔVE, chosen to tailor the subsequent beam. Here, ΔVE is determined empirically

to maintain constant Nb however Ch. 3 will present a formula to analytically

determine the necessary ΔVE for any size beam desired.

After a beam is extracted, particles from the plasma are depleted and the
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Figure 2.10: Fast and slow beam extraction procedures are compared: ln(Nb) (•)
for fast (≈ 10 μs) extractions at different values of VE; and ln(Nb) (—) vs. VC, as
measured continuously while VC is ramped slowly from -100 V → 0 V at a rate
of 0.015 V/μs. Also shown (· · · ) is the prediction in Eqs. 2.10 and 2.11 with T =
0.05 eV.



35

plasma density drops resulting in an increased Debye length. Thus each subsequent

beam will have a progressively larger width. This is illustrated in Fig. 2.11, where

50 % of a trapped plasma is extracted in the form of 20 beams. Notice the plasma

density drops, while the beam width expands.

To counter this effect, we utilize the RW technique (described in Sec. 1.4)

to maintain the plasma at a constant density. For multiple beams extracted in

this manner, it was empirically determined that in order to maintain a constant

amplitude pulses, ΔVE must remain fixed throughout the extraction process.

Shown in Figs. 2.12 - 2.14 is an example in which over 50 % of the plasma

was removed by extracting a sequence of 20 beams while maintaining fixed n0 by

RW compression. In this case, n0 is held constant while Rp is allowed to vary with

each extraction.

The total collected charge for each extracted beam is shown in Fig. 2.12.

The time interval between beam extractions was set to 200 ms in order to allow for

full RW compression after each extraction. Here, this process yielded 20 constant-

amplitude beams (i.e., ΔNb/Nb < 0.05) with Nb ≈ 1× 107 per pulse.

In Fig. 2.13, the z-integrated plasma density is shown before and after

extraction of the 20 beams at fixed density n0 ≈ 2 × 109 cm−3 and temperature

T ≈ 0.3 eV (the density and temperature change by less than 10% over the total

extraction). Here, the RW plasma compression is done at a constant frequency

fRW = 1.05 MHz and amplitude VRW = 1.2 V. For this case, both n0 and T (and

hence λD) are approximately constant during the multiple-beam extraction process,

while the total number of particles in the plasma drops from N0 ≈ 4.6 → 2.4×108,

corresponding to ejecting ≈ 50% of the plasma.

Because the Debye length is the same for each beam, we expect the beam

widths to also be the same. This is verified in Fig. 2.14 where the profiles for the

1st, 10th, and 20th extracted beams from Fig. 2.12 are shown. Here, the measured

beam width ρb ≈ 0.2 mm remains approximately constant for all beams. Using

the measured values for n0, T , Lp, and N , we find λD ≈ 0.09 mm and ξ ≈ 0.2.

Plugging these values into Eq. 2.15, we would expect a beam-width ρb ≈ 0.18 mm,

in excellent agreement with the data in Fig. 2.14.
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Figure 2.11: (a) Plasma profiles σz(r) before (- - -) and after (—) the extraction
of 20 beams of Nb ≈ 0.07× 108. The plasma temperature remains constant, while
the density drops a factor of 2 (T ≈ 0.05 eV, n0 ≈ 9 → 4× 109 cm−3). Here Lp ≈
21 cm. (b) The lst, 5th, 10th, 15th and 20th beam profiles are plotted. Note the
decreasing plasma density causes the widths to progressively increase.
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Figure 2.12: Nb for twenty electron beams extracted consecutively with < Nb >
= (0.1 ± 0.005)×108, ξ ≈ 0.2 and the RW on.
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Figure 2.13: Plasma profiles σz(r) before (- - -) and after (—) the extraction of
20 beams of Nb ≈ 0.1×108. RW compression holds the plasma parameters (T ≈
0.3 eV, n0 ≈ 2×109 cm−3) approximately constant, while the total number drops
from N0 ≈ 4.6 → 2.4× 108. Here Lp ≈ 21cm.
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Figure 2.14: Profiles σb(r) for the 1st (•), 10th (�), and 20th (�) extracted beams
in Fig. 2.12. Nb ≈ 0.1×108 for all beams. The beam width (ρb ≈ 0.2 mm) re-
mains approximately constant because here λD is invariant during entire extraction
process. Gaussian fits (· · · ) are also shown.
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It should be noted that a previous experiment with positrons in a Penning-

Malmberg trap demonstrated the extraction of multiple beams from a single trapped

plasma [23, 39]. However, the positron density was low enough (i.e., λD/Rp > 1)

that no plasma effects were observed. Further, the time between pulses was much

shorter than the re-equilibration time, and thus the plasma distribution was likely

non-Maxwellian for all but the first couple of beams. One effect of this was that

a non-constant ΔVE was necessary in order to produce equal-strength beams [39].

In contrast, the experiments shown here (cf., Figs. 2.12-2.14) demonstrate how

a suitable plasma (i.e., λD/Rp � 1) can be used to extract more than half the

plasma into a series of identical, high quality beams using a constant ΔVE.

2.6 Summary

We have demonstrated the ability to extract high quality charged particle

beams from a Penning-Malmberg trap. Beams were tailored to low spatial spreads

(e.g., ρb < 50 μm) and high brightness using RW compression and cyclotron

cooling. A theory is developed based on a simple model that predicts accurately

the beam spatial profile and width. The extraction of multiple beams has been

demonstrated, showing an exciting possibility for a Penning-Malmberg trap to

function as a effective source of positrons. Finally, multiple beams were extracted

in a reproducible (ΔNb/Nb < 5 %) and efficient (≈ 100 %) manner.



Chapter 3

Beam Energy Distribution

Functions 1

In Ch. 2, a novel technique to extract small beams from a single component

plasma in a Penning-Malmberg (PM) trap was presented. Using a simple mode,

many properties of the beam were derived including the radial profile, width, and

relative brightness. These predictions were all verified using electron plasmas in

the high field trap presented in Sec. 1.4. The results demonstrate the potential

to use a PM trap to create positron beams of small width and large brightness in

a reproducible and nondestructive manner. However, presently there has been no

discussion of the beam energy spread which is important for many applications.

For energy resolved atomic physics, beam bunching, microscopy, antihydrogen for-

mation, and Bose-Einstein condensed positronium, a low energy spread positron

beam is desired [29, 51, 58, 43, 56, 55, 20, 62, 24, 1, 9, 21, 2]. Therefore, to ver-

ify the utility of these beams for positron applications we will now determine the

energy distribution functions of the beam. Because of the large electric potential

gradients across the plasma (ΔV ≈ 50V ), one might expect the beam spread to

be much larger than that of the parent plasma temperature T . This section will

show that this is not the case, while illustrating more physics behind the extraction

process.

1This Chapter is based upon the paper, T. R. Weber, J. R. Danielson and C. M. Surko, Phys.
Plasmas, 057105 (2009). Mr. Weber was the lead scientist on this work.
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3.1 Theoretical description

In this section, an expression is developed for the energy distribution func-

tion of the beam as a function of the plasma parameters and extraction voltage VE

only. As mentioned in Ch. 2, it is assumed that the exit gate is lowered for a time

which is sufficiently long so that all the particles with enough energy to escape do

so. It is also assumed that the plasma particles with largest velocity parallel to the

magnetic field v‖ escape first. While not strictly valid, this assumption makes the

calculations below tractable and is qualitatively correct in that the particles with

large v‖ traverse the plasma length faster, thus making them more likely to escape

first. The finite slewing time of the exit-gate electrode also favors this order.

In this section, rather then working with velocities inside the plasma (i.e.,

v‖ and v⊥) we will work with kinetic energies in motion parallel and perpendicular

to the magnetic field outside the plasma, denoted E‖ and E⊥ respectively. Inside

the plasma, E‖ is defined as,

E‖ = φ(r) + 0.5mv2‖, (3.1)

or the sum of the potential and kinetic energy in motion parallel to the magnetic

field inside the plasma. Once a particle escapes confinement, it is in a zero potential

region outside the plasma. Then, E‖ is simply,

E‖ = 0.5mv2‖, (3.2)

where v‖ simply represents the particle’s velocity parallel to the magnetic field

in the zero potential region outside the trap. Note that E‖ is conserved between

Eqs. 3.1 and 3.2. The main point is that as the particle moves from a region of

large electric potential [i.e., |eφ0(0)|] to a region of low potential (0 V outside the

plasma), v‖ will increase and solely defines E‖. E⊥ is defined as,

E⊥ = 0.5mv2⊥. (3.3)

or the kinetic energy in motion perpendicular to the magnetic field. For beams

extracted here, E⊥ remains constant as the particle exits the trap.
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The condition that a particle escapes now is simply,

E‖ > |eVE|. (3.4)

The particles that escape confinement constitute the beam. What we would like to

know is the energy distribution function of the beam, or the number beam particles

at a given E‖ and E⊥ outside the trap.

With this in mind, using the new variables E‖ and E⊥, the single particle

distribution function for a uniform density “flat-top” plasma in thermal equilibrium

is approximately,

fP(E‖, E⊥, r, θ, z) ≈ n0√
πT

3
2

exp
(
−E⊥+E‖+eφ(r)

T

)
√

E‖ + eφ(r)
, (3.5)

where the uniform E × B rotation has been neglected, an assumption valid when

the thermal velocity is greater than the rotation velocity of the particles near the

extraction region. This condition is written as ρbfE/vt � 1, where fE is the

rotation frequency of the plasma. This requirement is well satisfied for all plasmas

in the Brillouin limit, the maximum theoretical density for a plasma in PM trap.

For plasmas in this work, ρbfE/vt < 5×10−4. Note that Eq. 3.5 is just a convoluted

way of writing a Maxwellian in the new variables defined in Eqs. 3.1 and 3.3. In

Ch. 2, we found the escaping particles by using a simple particle distribution with

a complicated escape condition. Now, we have done the opposite.

As discussed in Sec. 2.2, to determine the beam particles that escape, one

uses φ(r) at the end of the extraction process. There, φ(r) contains an equilibrium

piece φ0(r), and a nonequilibrium piece �φ(r) that depends on the number of

escaping particles. Just as in Sec. 2.2, for sufficiently small beams �φ(r) may be

neglected so that φ(r) ≈ φ0(r), independent of the number of escaping particles

Nb. The potential φ0(r) is known analytically, and quadratic in r for r < RP [53].

Then, the energy distribution function of the beam is simply Eq. 3.5 integrated

over all r, θ and z,

f(E‖) =
n0√
πT

3
2

∫ exp
(
−E⊥+E‖+eφ0(r)

T

)
√
E‖ + eφ0(r)

dE⊥drdθdz, (3.6)
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under the condition that E‖ > eVE; f(E‖) = 0 otherwise. Because the E⊥ depen-

dence is trivial and does not change during the extraction process, we here integrate

over it to obtain the projection of the distribution function onto E‖ space. This will

be done in the future with the understanding that the distribution in E‖ space is

related to the full 3 dimensional distribution function by the trivial transformation,

f(E‖, E⊥) = f(E‖)e−E⊥/T/T. (3.7)

After evaluating Eq. 3.6, we arrive at the energy distribution function for a

small beam,

f(E‖) =
Lp

e2
erfc

(√
E‖ + eφ0(0)

T

)
, (3.8)

where erfc is the complementary error function. Again, this is only valid for small

beams and values of E‖ > eVE; f(E‖) = 0 for E‖ < eVE. When [E‖+eφ0(r)]/T ≥ 2,

Eq. 3.8 is approximately,

f(E‖) ≈ Lp

√
T

e2
√
π

exp
(− [E‖ + eφ0(0)

]
/T
)

√
E‖ + eφ0(0)

. (3.9)

This is the approximate energy distribution for small beams (i.e., ξ � 1) when �φ

is negligible. It is also just the tail of a Maxwellian energy distribution starting at

energy |eφ0(0)|.
For larger beam amplitudes, �φ(r) cannot be neglected and the simple

expression for the energy distribution function in Eq. 3.6 is invalid. Now it is

necessary to first calculate the total number of escaping particles Nb as a function

of VE before the energy distribution function can be obtained. To accomplish this,

we must first find an accurate approximation for �φ(r). In Sec. 2.2, it was shown

that for ξ < 1, radial beam profiles are Gaussians with widths given by

ρb = 2λD(1 + ξ)
1
2 . (3.10)

Further, Sec. 2.2 defined �φ(r) for these Gaussian beams as,
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�φ(r) =
Tξ

e

[
2 ln

r

RW

+ Γ

(
0,

r2

ρ2b

)
− Γ

(
0,

R2
W

ρ2b

)]

≈ �φ(0) + ξ
T

e

r2

ρ2b
, (3.11)

where Γ is the upper incomplete gamma function. This expression can be inserted

into Eq. 3.5 [i.e., as φ(r) = φ0(r) − �φ(r)] and integrated over all space, both

position and energy, with condition that E‖ > eVE to obtain an expression for the

total number,

Nb =
n0√
πT

3
2

∫
E‖>eVE

exp
(
−E⊥+E‖+eφ(r)

T

)
√

E‖ + eφ(r)
dE‖dE⊥drdθdz. (3.12)

Evaluating this expression gives,

ξ = (1 + ξ)

[
Ae−A2

√
π

− (A2 − 0.5)erfc(A)

]
, (3.13)

where

A =

√
η + ξ

[
γ + 2 ln

RW

ρb
+ Γ

(
0,

R2
W

ρ2b

)]
,

and γ is the Euler gamma constant. Here, the expression has been conveniently

written in terms of ξ, RW/λD and the parameter,

η ≡ − e

T
[VE − φ0(0)] . (3.14)

In Eq. 3.13, the quantities ξ and η are the suitably scaled values of Nb and VE, re-

spectively. Equation 3.13 is very useful in that for an initial plasma and extraction

voltage, one obtains Nb. Thus, it is now possible to know Nb, and subsequently

σb(r) and ρb, without having to measure the beam. Although Eq. 3.13 is not tran-

scendental in ξ, the analytical expression for ξ (η) will not be written out. One

reason for this is Eq. 3.13 is already in a very convenient form, as all the �φ effects

are isolated on the right hand side (RHS) of the equation. Thus, by simply setting

ξ = 0 on the RHS, an expression for ξ remains when �φ is negligible. Further, the
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analytic expression for ξ (η) is very long and complicated. With the availability of

computers, it is much easier to simply find a self-consistent numerical solution to

Eq. 3.13 for fixed values of RW/λD, rather then to write out each term in the long

expression for ξ (η).

The real power of Eq. 3.13 is that now, using this equation, the energy

distribution function of the beam including �φ effects can be obtained without

the approximations made in arriving at Eq. 3.8. The more accurate parallel energy

distribution function is then simply,

f(E‖) = −1

e

dNb

dVE
, (3.15)

evaluated at E‖ = −eVE. Or, in the new scaled variables,

f(η) =
e2

Lp

dξ

dη
, (3.16)

evaluated at η =
[
E‖ + eφ0(0)

]
/T . Again, for the reasons stated above, Eq. 3.16

will not be evaluated analytically. Now, for a given plasma and VE, the total

number, width, spatial and energy distribution of the beam are obtained a priori.

Unfortunately, Eq. 3.13, and consequently Eq. 3.16, are very sensitive to the equi-

librium plasma potential φ0(0), which is only known to ±10 % due to uncertainties

in Lp. When testing the equations developed here, we will determine φ0(0) more

precisely by varying it to find the best fit of Eq. 3.13 to data.

As will be shown below, the shape of f(E‖) varies significantly as ξ is

changed. In order to provide a clear and concise measure of the distribution func-

tion resulting from these changes, we will here define the mean and root-mean-

squared energies of the distribution. We define the mean energy relative to the

minimum energy of the beam Emin = −eVE as,

δĒ = 〈E〉 −Emin, (3.17)

and the dispersion in energy (i.e., root-mean-square deviation from the total mean

energy) as

�E =

√
〈E2〉 − 〈E〉2. (3.18)
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In Eqs. 3.17 and 3.18, <> denotes the average of the quantity over the full distri-

bution function of the beam f(E‖, E⊥, r). If one wishes to find the expressions in

parallel energy space only, use the relations,

〈
E‖
〉
= 〈E〉 − T, (3.19)

and

�E‖ =
√

�E2 − T 2. (3.20)

The quantities in Eqs. 3.17 and 3.18 will be calculated below as a function

of ξ and RW/ld. In the small beam limit (ξ → 0), δĒ → 2T and �E → √
2T ;

while in the dilute charged gas limit (i.e., the non-plasma limit; |eφ0(0)| � T

and Nb = N0), δĒ and �E are (3/2)T and
√

3/2T respectively. The difference

between these two cases is that for the former, only the tail of the Maxwellian is

extracted as opposed to the entire thermal distribution in the latter.

3.2 Comparison between theory and experiment

Shown in Fig. 3.1 are data for the beam amplitude Nb extracted as a func-

tion of VE, together with two predictions of the theory. The initial plasma param-

eters were N = 4×108, n = 1×109 cm−3, T = 1 eV, and Lp = 15 cm. The dashed

line is the prediction of Eq. 3.13 when ξ is neglected on the RHS. This results in a

direct expression for ξ when �φ(r) can be neglected during the beam extraction

process (i.e., for small beams). As seen in the figure, these predictions agree with

the data for small values of Nb (or ξ), however they diverge rather dramatically

for larger values of Nb. Because �φ(r) acts to inhibit particles from escaping,

neglecting it results in a large overestimation of the number of escaping particles.

The solid line in Fig. 3.1 is the prediction of Eq. 3.13 solved self-consistently, with

φ0(0) adjusted for best fit for the reasons discussed in Sec. 3.2. In this case, the

predictions and the data are in excellent agreement.

The beam parallel energy distribution f(E‖) is found from Eq. 3.15, or by

numerically by taking the derivative dNb/d(eVE) of the data and predictions shown
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in Fig. 3.1. This results in both measured and predicted values of f(E‖). For the

curve with ξ neglected on the RHS of Eq. 3.13, this derivative is of course identical

to Eq. 3.8. The experimental and predicted distribution functions are shown in

Fig. 3.2 for two values of ξ. As shown in Fig. 3.2, for the smallest-amplitude

beam (ξ = 0.02), �φ(r) can be neglected and the predictions of Eq. 3.8 agree

well with the data. For the larger beam (ξ = 0.4), the predictions of Eq. 3.8

deviate significantly from data. Equation 3.8 does a poor job at predicting f(E‖)

due to the non-negligible effect of �φ(r). However, good agreement is seen with

the predictions using the derivative to the full solution to Eq. 3.13, even for the

relatively large beam of ξ = 0.4. The corresponding values of �E/T (δĒ/T ) for

the distributions shown in Fig. 3.2 are 1.4 (2.0) and 1.8 (3) for ξ = 0.02 and 0.4,

respectively.

With the validation of the predictions of Eq. 3.13, we consider further its

implications for a wide range of plasma parameters and beam amplitudes. Equa-

tion 3.13 relates ξ to η with the only adjustable constant being the dimensionless

parameter RW/λD. Given RW/λD, one can then solve for ξ as a function of η,

relating Nb to VE for given values of the plasma parameters (i.e., T , n, and Lp).

In Fig. 3.3, solutions to Eq. 3.13 are shown for three values of RW/λD spanning a

factor of 100 in this parameter. The data from Fig. 3.3 are scaled appropriately

and included for reference. As can be seen in Fig. 3.3 and by examining Eq. 3.13,

the curves have a noticeable, but relatively weak, dependence on RW/λD.

The energy distribution functions can then be obtained from the solutions

for ξ(η) using Eq. 3.16. Results are shown in Fig. 3.3 for ξ = 0.4 and three values of

RW/λD. These energy distributions vary markedly in shape as RW/λD is increased.

Useful measures of the changes in the distribution function are obtained by cal-

culating the moments (Eqs. 3.17 and 3.18) of the distribution given by Eqs. 3.13

and 3.16. In Fig. 3.4, the mean beam energy δĒ is shown as a function of ξ for a

range of RW/λD. This is a critical parameter for many applications. Also shown

in Fig. 3.4 are measured data for RW/λD = 50 that are in good agreement with

the predictions. The calculated rms energy spread �E is also shown as a function

of ξ for the same values of RW/λD. Experimental data for RW/λD = 50 are used



49

Figure 3.1: The number of beam particles Nb (•) is shown as a function of the
extraction voltage VE. Here, T = 1.0 eV, n0 ≈ 1 × 109 cm−3 and φ0(0) = 27 V.
Also shown are the predictions of Eq. 3.13 (—), solved numerically, along with the
solution (- - -) obtained from Eq. 3.13 when setting ξ = 0 on the RHS.
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Figure 3.2: Comparison of the beam energy distribution functions f(E‖) for dif-
ferent beam amplitudes: (a) ξ = 0.02 and (b) ξ = 0.4. These distributions were
obtained from Eq. 3.15 using the experimental data and the theoretical predictions
shown in Fig. 3.1. The experimental conditions and symbols are the same as in
Fig. 3.1.
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Figure 3.3: (a) Numerical solutions to Eq. 3.13 (—, - - -, -··) are shown for values of
RW/λD of 5, 50, and 500, respectively. (b) the corresponding energy distribution
functions f(E‖) are shown scaled by (e2/Lp)

−1, calculated with Eq. 3.16 using the
solutions shown in (a). Data from Fig. 3.1 (�) are also plotted in (a) and (b).
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and seen to be in good agreement with the predictions. For applications where

good energy resolution is required, it is desirable to have as small a value of �E

as possible. While increasing the beam amplitude increases �E/T , this has a di-

minishing effect for plasmas with smaller RW/λD. The reason for this can be seen

by approximating �φ(0) as that from a ‘flat top’ and then expressing it as,

∣∣∣∣e�φ(0)

T

∣∣∣∣ ≈ ξ

[
1 + 2 ln

RW

λD

− ln 4 (1 + ξ)

]
. (3.21)

The increase in �E/T with RW/λD is related to the number of particles that are

prevented from escaping at r = 0 by the change in �φ(0). Equation 3.21 shows

that for small RW/λD, �φ(0) has a diminishing effect. Notice that for a given ξ,

while increasing RW/λD does increase e�φ/T , it does so slowly (i.e., logarithmi-

cally). Physically, this can happen either by decreasing λD thereby making the

beam smaller which increases �φ(0), or by increasing RW which decreases the

effect of the screening image charge on the cylindrical electrodes, hence increas-

ing �φ(0). As mentioned above, increasing �φ will prevent more particles from

escaping thus increasing the energy spread of the resulting beam (c.f., Fig. 3.4).

Note in Fig. 3.4, as ξ increases the spread in E⊥ remains constant; only

the parallel energy distribution contributes to the increase in δĒ and �E/T . In

particular, the dispersion in the parallel energy is given in Eq. 3.20. This provides

a convenient relation between �E and �E‖. Notice �E‖ increases from 0.9 to 1.5

as ξ increases from 0.02 to 0.4 in the data shown in Fig. 3.4.

3.3 Summary

It has been shown that the method to create beams with small transverse

spatial extent presented in this thesis also produces cold beams of narrow energy

spreads. Specifically, the energy spread of the beam is set by the parent plasma

temperature, which can be made mall via cycltron cooling (e.g., T < 25 meV).

Such beams are expected to be useful in many applications. For example, the

creation of beams with small transverse spatial and energy spreads is critical in

the development of positron microscopic techniques to study materials [29, 51]. In
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Figure 3.4: The quantities (a) the mean energy, δĒ/T = 〈E − Emin〉 /T (i.e.,
Emin = −eVE ); (b) rms spread in total energy �E/T calculated using Eqs. 3.13,
3.16, 3.17 and 3.18 are shown as a function of ξ for three values of RW/λD. Data for
plasma parameters given in Fig. 3.1 (�) are also shown for RW/λD = 50. Arrows
indicate the value for a Maxwellian beam. Curves are marked the same as Fig. 3.3.
See text for details.
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other applications, beams with small total energy spreads will enable new kinds

of spectroscopic studies of positron interactions with matter such as higher resolu-

tion studies of positron-impact excitation of vibrational and rotational transitions

in molecules [58, 41, 60]. Similarly, beams with narrow parallel energy spreads

will facilitate pulse compression in the time domain. This, in turn, could enable

the development of new techniques for positron annihilation lifetime spectroscopic

(PALS) studies of materials [43, 56, 55, 20, 62, 24, 1, 9]. A final important applica-

tion of cold positron beams is the creation of cold antihydrogen atoms [21, 2]. For

this applications, the low energies of antihydrogen required for magnetic trapping

(< 4 K) necessitate extremely cold positron and antiproton beams.



Chapter 4

Electrostatic Beam

4.1 Introduction

A current limitation on beams created in Chs. 2 and 3 is that they reside

in a large magnetic field. This presents a problem for applications that require an

electrostatic positron beam (i.e., a positron beam in a magnetic field free region)

[42, 60]. For example, electrostatic beams provide increased sensitivity in studying

angular scattering from atomic and molecular targets [60, 36], and they have the

long-term potential of leading to a positron reaction microscope [64]. One can also

use electrostatic techniques for additional positron beam focusing and so-called

“remoderation” to further enhance beam brightness [42, 24] for applications such

as Ps2 and Ps-BEC formation [45]. For these applications, extraction of the beam

from the magnetic field is required. However, this process presents many difficulties

including a potentially dramatic increase in the beam width and mean transverse

energy E⊥ [32], which is deleterious for some applications.

Motivated by these considerations, we will now demonstrate a technique to

extract a class of high quality electrostatic beams from a Penning-Malmberg trap.

The initial beam is formed using the techniques presented in Ch. 2. The extraction

from the field is then done in two stages: the beam is first transported to a region

of much lower field (1 mT), followed by a fast (i.e., non-adiabatic) extraction to

zero field. Once in this zero-field region, the beam is focused using an Einzel lens

to demonstrate electrostatic beam control and to decrease the transverse beam size

55
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while conserving the beam emittance ε [54].

4.2 Description of the experiments

The initial beam formation process in the 4.8 T field is identical to that

used in the previous two chapters. As a reminder, these beams have Gaussian

radial profiles [i.e., z-integrated areal particle distribution σb(r)] of the form,

σb(r) = σb0 exp
[− (r/ρb)

2] , (4.1)

where σb0 is a constant and,

ρb = 2λD (1 + ξ)1/2 , (4.2)

with

ξ = e2Nb/TLp, (4.3)

the total number of beam particles per pulse Nb scaled by the plasma temperature

T and length Lp.

The magnetic extraction process is illustrated in Fig. 4.1. The beam is first

transported adiabatically from the 4.8 T field to 1 mT before undergoing a rapid

extraction from the field. The beam-transport energy used here is ≈ 30 eV. An

important parameter used to measure the (non)adiabaticity of the process is,

γ =
τcycdB/dt

B
, (4.4)

where τcyc is an electron gyroperiod and dB/dt is the rate of change of the magnetic

field in the beam frame. Ideally, transport to low field is done in a manner such

that γ � 1. In this case, the beam particles conserve the adiabatic invariant J

defined by,

J =
E⊥
B

, (4.5)
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Figure 4.1: (above) Schematic diagram of the experiment illustrating the magnetic
extraction, followed by the Einzel lens spatial focus to a collector cup. (below) The
on-axis magnetic field (oriented in the z direction) Bz(r = 0). Saddle coils used to
align the field at z ≈ 140 cm are not shown.

where E⊥ is the kinetic energy in the motion perpendicular to the magnetic field,

namely E⊥ = 1/2mv2⊥, with v⊥ =
√
v2θ + v2r [67]. Qualitatively, during the transi-

tion to lower fields, the particles stay glued to their respective magnetic field lines

while undergoing small-scale gyromotion. As illustrated in Fig. 4.1, the field is

allowed to fall off naturally as the particles exit the high field (HF) magnet. Op-

posing coils (at z ≈ 150 and 175 cm in Fig. 4.1) precisely define the field after the

magnetic reduction and shorten the length of the experiment. Over most of the

slow magnetic reduction, Eq. 4.5 is well satisfied while in the last 10 cm, gamma

is larger, namely |γ| ≈ 0.6.

One key difficulty in this experimental arrangement is aligning precisely the

HF magnet with respect to the beam tube (i.e., the vacuum chamber supporting

the opposing solenoid). This is accomplished by first imaging the beam on a

phosphor screen temporarily mounted at the end of the low field region where

the permalloy shield begins. The orientation of the HF magnet is adjustable, and

it is aligned until the beam is visible on the screen. Once this is accomplished,

saddle coils, placed at the beginning of the first opposing solenoid (z ≈ 140 cm in

Fig. 4.1), are used to center the beam in the tube.
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Figure 4.2: Schematic diagram of the Einzel lens and collector cup.

At the end of the low field region (z ≈ 180 cm in Fig. 4.1), a non-adiabatic

(i.e., γ � 1), fast extraction is performed in which the adiabatic invariant in Eq. 4.5

is not conserved. In this more or less standard technique [51], the particle has no

time to respond to the v×B forces from the flaring magnetic field due to the fact

that the field changes so quickly. As a result, the radial positions of the particles

remain constant while they undergo an increase in the azimuthal component of

their velocity vθ from the short impulse due to the Lorentz force. This impulse is

radially dependent and will be referred to later as a “kick”.

Experimental details of the fast extraction are shown in Figs. 4.1 and 4.2.

It is accomplished using a high magnetic permeability shield (made of sheets of

Permalloy, μr ∼ 2× 104) with a front cap that has a hole in the center of diameter

d ≈ 5 cm. This hole forms a tight fit around the necked down portion of the

beam tube (z ≈ 175 cm in Fig. 4.1). The Permalloy screens the magnetic field

from inside the shield and creates a fast extraction region at the beginning of the

front-cap hole where B = 1 → 0 mT.

The currents required in the two opposing coils to obtain the desired fields

were initially calculated numerically using the Poisson Superfish codes [6]. They

were then determined more precisely by measuring the on-axis magnetic field near

the shield using a Hall probe. This was necessary because the computer code could

not achieve the magnetic field precision that is required (i.e., a reduction in B by



59

a factor ∼ 104).

Inside the magnetic shield, the beam is guided only by electrostatic fields

(i.e., a so-called electrostatic beam). As illustrated in Fig. 4.2, it is then focused

with an Einzel lens and the beam properties are measured with an apertured

collector cup mounted on a movable linear feed-through. The Einzel lens consists

of three identical hollow cylinders (≈ 6 cm in length and inner diameter) that are

electrically isolated from the chamber and from each other. The lens is operated

in an acceleration-deceleration mode where the center electrode is biased to a large

positive voltage VL and the two exterior electrodes are grounded.

Once focused, the z-integrated central beam intensity is measured with the

collector cup. The aperture on the cup has a centered hole of diameter d ≈ 0.24

cm which is used to estimate the maximum rms transverse spatial spread of the

beam Δr =< r2 >1/2. Note that for a Gaussian beam, Δr = ρb. By moving the

collector in the z direction, the focal position of the lens is found as the position

of maximum collector signal. After the approximate focal position is determined,

the saddle coils are adjusted to (iteratively) maximize the signal on the collector

and thereby precisely center the beam. This process must be repeated every few

days to account for small systematic changes in the experiment. The beam-pulse

intensity is also measured upstream by gathering charge on a collector plate. This

measurement is used together with the collector-cup signal to obtain the percentage

of the beam that passes through the collector-cup aperture.

4.3 Experimental results

Electrostatic beams were created using the experimental apparatus and

procedures described in Sec. 4.2. Figure 4.3 illustrates the initial radial beam

distribution in the 4.8 T field. Beam pulses (≈ 5 μsec in duration) were extracted

from parent plasmas with parameters: N ≈ 3.5×108 electrons; n ≈ 1.2×1010 cm−3;

T ≈ 0.1 eV; and Lp ≈ 15 cm. The beam parameters are the number of particles

per pulse Nb ≈ 3.4 × 106 and scaled beam amplitude ξ ≈ 0.4 [cf., Eq. 4.3]. The

transport energy of the beam is 30 V, which is set by the plasma potential. The
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perpendicular energy spread is Maxwellian with T = 0.1 eV, while the parallel

energy spread is non-Maxwellian [65]. The total energy spread is found to be

�E ≈ 0.24 eV from previous work [65]. Inserting the relevant parameters into

Eq. 4.2 yields a beam width ρb ≈ 54 μm in the 4.8 T field, which is in reasonable

agreement with the measured value of ρb = 65 μm.

This beam is then extracted from the 4.8 T field in the manner described

in Sec. 4.2 to produce an electrostatic beam. Due to adiabatic expansion from

the slow reduction to B = 1 mT, the beam has a width ρb ≈ 0.45 cm, which

remains unchanged in the extraction from the field. The beam is then focused

with an Einzel lens and detected using the apertured collector cup illustrated in

Fig. 4.2. Data for the collected beam particles as a function of the z-position of the

collector aperture are plotted as solid points in Fig. 4.4, where z = 0 corresponds

to the end of the lens (z ≈ 205 cm in Fig. 4.1), and the sign convention for z is

that used in Fig. 4.1. The data are expressed as the percentage of beam particles

transmitted through the aperture at a given value of z. The voltage applied to

the center electrode of the lens for this scan was VL = 5 kV. Operationally, we

define the focus (i.e., the focal position) of the lens as the z position of maximum

transmission through the aperture. For the data shown in Fig. 4.4, it occurs at

z ≈ 5 mm, where ≈ 43% of the beam passes through the aperture of diameter

d = 0.24 cm. Note the marked asymmetry of the focusing curve as a function of

z, namely a fast rise followed by a slower decline beyond the focus. This is related

to lens abberations and will be discussed further in the next section.

Unfortunately, this experiment does not have the capabilities to measure

a beam profile at the focal position. Because these beams are non-Gaussian (cf.,

Sec. 4.4), the only quantity that can be reported is the maximum width of the

attenuated beam that passes through the collector aperture (i.e., Δr < 0.12 cm

for the data shown in Fig. 4.4).

To study the dependence of the focusing on the lens voltage, VL was varied

from 2 to 6 kV while curves similar to those shown in Fig. 4.4 were measured.

The focal position as a function of VL is plotted in Fig. 4.5. As VL is decreased,

the position of maximum focus moves farther away from the lens, while for larger
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Figure 4.3: The initial beam in the 4.8 T field. The beam parameters are Nb ≈
3.4 × 106, ξ ≈ 0.4, and �E ≈ 0.24 eV. A fit to Eq. 4.1 is plotted (- - -), with
ρb ≈ 65 μm.
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Figure 4.4: The percentage of the beam that is transmitted through the collector
aperture (d = 0.24 cm) vs. the z-position of the aperture (•). Here, VL = 5 kV.
Shown also are the predictions (�) based on numerical simulations of the particle
trajectories (cf., Sec. 4.4).
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Figure 4.5: The measured focusing position of the lens vs. the applied lens volt-
age VL (•). Shown also are the predictions of numerical particle simulations (�)
described in Sec. 4.4.

values of VL, the focus approaches the position of the end of the lens at z = 0.

In Fig. 4.6, the percentage of beam particles passing through the aperture

is plotted as a function of the lens voltage VL for the same initial beam conditions

as the data in Fig. 4.4 1. The transmission rises as a function of VL and then

saturates. At VL = 6 kV, ≈ 55% of the beam passes through the aperture.

1The data point at the focal point in Fig. 4.4 differs slightly from that at VL = 5 kV in Fig. 4.6,
likely due to run-to-run differences in the experimental conditions.
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Figure 4.6: The percentage of the beam particles transmitted through the aperture
vs. VL (•) for the beam shown in Fig. 4.3. Theoretical predictions based on the
particle simulations discussed in Sec. 4.4 are also shown (�).
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4.4 Numerical simulations

In order to interpret the experimental data and extrapolate to different ex-

perimental conditions, the electron trajectories through the electric and magnetic

fields during the fast extraction and Einzel lens focus were simulated using nu-

merical methods. The electric and magnetic fields are calculated from the lens,

collector, permalloy, and coils (see Fig. 4.1) using the Poisson Superfish code [6].

The assumption is made that the Gaussian beam in Fig. 4.3 has been slowly

transported from the HF trap to 1 mT. Then, a sampling of the beam particle

trajectories is calculated through the fast extraction region and Einzel lens. The

percentage of beam particles passing through the aperture and focal position of

the lens are estimated from these trajectories.

Three of these trajectories are plotted in Fig. 4.7 for two different values of

VL. Notice the scale difference in both z and r between the two panels shown in

Fig. 4.7. For VL = 5 kV, the focus occurs at significantly smaller values of r, and

across a smaller region in z, than for VL = 2 kV. For a given initial radius and

kick (cf., Sec. 4.5), the minimum particle radius scales as 1/VL. For all trajectories

studied (ignoring aberrations, discussed below), there is a linear relation between

the initial radius ri and the minimum radius rf . This minimum radius is set by

the initial angular momentum of the particles immediately following extraction

from the field, which is proportional to the δvθ kick that they receive when exiting

the magnetic field (cf., Sec. 4.5). The smaller the kick, the closer the particles

approach the z-axis at r = 0. The focus moves farther away from the lens as the

incident beam energy is increased. This is because at higher incoming energies

the beam particles spend less time in the lens, and hence are less affected by the

focusing electric fields. For VL = 5 kV, the focus is at 2, 6 and 27 cm for beam

energies of 15, 30 and 60 eV, respectively.

Predictions for the radial beam profiles at the focus are also plotted in

Fig. 4.7. They show relatively large departures from the initial Gaussian beam

profiles used as inputs in the simulations. This is primarily due to lens aberrations,

namely the fact that particles with different initial radii focus at different values

of z. For VL = 2 kV, the profile shows a significant departure from the initial
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Gaussian, while for VL = 5 kV, the distortion is even more extreme. Thus the

Gaussian parameter ρb is no longer a good measure of the beam width at the

focus. Instead, we use the rms transverse spatial spread of the beam Δr. In

Fig. 4.7, the values for Δr are 2.0 and 1.0 mm for VL = 2 and 5 kV respectively.

The observed aberrations arise when particle trajectories pass through larger

values of r in the lens (i.e., when r ∼ 0.5RL, where RL is the radius of the lens).

There are two primary mechanisms for particles sampling large values of r. One

is that when the particles start out at larger radii, they experience stronger radial

electric fields and larger δvθ kicks (cf., Sec. 4.5) thus causing their trajectories to

traverse larger radii in the lens. The second mechanism is due to the fact that for

large values of VL, the large radial electric fields of the lens push particle orbits to

larger radii in the lens.

The trajectories shown in Fig. 4.7 do not include effects from the collector.

Including the potential surfaces of the collector makes only small changes, namely

shifting the trajectories in the z direction by a relatively small amount (δz ≈ −2

mm) and increasing the minimum radius by ≈ 5%. When comparing the calculated

trajectories to the experimental data, as described below, these collector effects

were included.

Trajectories such as those shown in Fig. 4.7 were used to simulate the

experimental data shown in Figs. 4.4-4.6. The predictions rely on knowledge of

the beam profile in the 1 mT region. This quantity could only be estimated and is

subject to (what turns out to be) significant error (i.e., ρb = 0.45± .05 cm). One

factor contributing to this uncertainty is that the orbits are not strictly adiabatic

in the 10 cm or so just before the fast extraction (i.e., here |γ| ∼ 0.4− 0.6). There

are also uncertainties in the exact magnetic topology at the extraction point and

imperfections in the beam transport system such as the effect of the saddle coils.

Both effects would alter the beam width while the latter would additionally change

the assumed Gaussian form of the beam, thus altering the predicted values. The

image of the beam on a phosphor screen near the entrance to the field-free region

does indicate a moderate degree of asymmetry, implying imperfections in the beam

transport system. As a result, the theoretical predictions shown in Figs. 4.4-4.6
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have relatively large uncertainties, as indicated by the error bars on the simulated

data points in these figures. It is important to note that these uncertainties are

related to a systematic error in the estimate of ρb and are therefore correlated.

Thus, the error bars in Figs. 4.4-4.6 represent the range of potential systematic

shifts of the theoretical curves.

The experimental data and theoretical predictions plotted in Fig. 4.4 are

found to be in fair agreement. Note that both the data and simulations exhibit

the same asymmetry as a function of z about the focal position. This arises from

the aberrations discussed above and illustrated in Fig. 4.7. The magnitudes at the

peak disagree by ≈ 25%. This is likely due to misalignments in the system de-

creasing the maximum throughput at the focal position. Due to the dramatic field

reduction and the extreme sensivity of the lens and collector system, maintaining

the alignment of the beam-line for maximum signal is difficult. Daily variations in

the superconducting magnet cyrogens and small thermal expansions of the exper-

imental apparatus have the potential to significantly alter the alignment. Other

data sets have yielded data in better agreement with the numerical predictions

(e.g., compare the VL = 5 kV point in Fig. 4.6 with the maximum percentage

transmission in Fig. 4.4).

The focal position as a function of VL is shown in Fig. 4.5. With the

exception of the point at VL = 2 kV, the theoretical predictions are in excellent

agreement with the measurements with no fitted parameters. The disagreement at

2 kV is likely due to two things. One is that the small signals and broad focusing

region at small VL create systematic difficulties in determining the position of

maximum focus. The other is that for low lens voltages, the particle simulations

are very sensitive to incoming beam energy, estimated to be 30.0 eV.

The maximum collector signal as a function of VL is shown in Fig. 4.6.

There is a significant discrepancy between the experimental and simulated data of

≈ 20 − 30%. As mentioned above, this could be due to an incorrect estimate of

the beam width ρb. As a result, the error bars on the theoretical points in Fig. 4.6

represent the potential range of corrrelated vertical shifts of the predicted data

points.
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To further test the experimental apparatus and model, the aperture diam-

eter was increased to d ≈ 0.48 cm and ≈ 80 % of the beam was measured to pass

through the collector aperture. This agrees well with the numerical prediction

from orbit calculations of ≈ 90 % transmission.

4.5 Theoretical description

It is difficult to construct a complete and accurate analytical model of all

parts of the experiment described here. However, relatively simple models of im-

portant parts of the beam transport and fast extraction processes can be described,

and are done so here. They provide further insights into the characteristics of the

transported and extracted beam.

4.5.1 Single particle dynamics

Ignoring the relatively small E×B drift motion in the θ direction, the beam

particles undergo cyclotron motion of radius ρc ≈ 1 μm in the 4.8 T field while

streaming along the magnetic field with a velocity vz. As described in Sec. 4.2, the

first step in the extraction of a charged particle from the magnetic field is a “slow”

(γ < 1) transport to 1 mT. During this process, a particle undergoes small-scale

gyromotion about its magnetic field line while the guiding-center position increases

as rf = ri
√

Bi/Bf due to magnetic flux conservation. (The subscripts i and f will

here and henceforth refer to the initial and final values of a quantity before and

after each of the two stages of the extraction process.)

In addition to the radial position of the particle, the perpendicular and

parallel energies change as well. Due to the constancy of J [cf., Eq. 4.5],

E⊥f =
Bf

Bi

E⊥i, (4.6)

E‖f = E‖i + E⊥i

(
1− Bf

Bi

)
, (4.7)

where E‖ and E⊥ are the parallel and perpendicular kinetic energies defined in

Sec. 4.2, and E‖f is obtained from energy conservation.
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Figure 4.7: Numerically calculated particle trajectories for three different initial
radii: 4 (−), 3 (·−·), and 2 mm (· · · ) for (a) VL = 2 kV, and (b) VL = 5 kV. Arrows
indicate the radial extent of the aperture used in the experiment. A theoretically
calculated beam profile (i.e., σb(r), in arbitrary units) at the lens focusing position
for each case are inset into the figures. Collector effects are not included.



70

After the first phase of this process, a fast extraction is performed. In this

case, the magnetic field in the beam frame changes sufficiently quickly that γ � 1.

For an ideal fast extraction, the radius of the particle remains constant as the

charged particle is ripped off the field line, hence rf = ri.

In this cylindrically symmetric case, the canonical angular momentum Pθ =

rmvθ − (e/c)rAθ is conserved [54], where Aθ is the θ component of the magnetic

vector potential. (Here and elsewhere in this paper, CGS units are used and the

sign of e is taken to be positive.) Using this relation, the change in vθ (δvθ =

vθf − vθi) for a fast extraction (i.e., B → 0) is,

δvθ = − eB

2cm
r, (4.8)

where r = ri = rf , and B is the initial magnetic field before the rapid decrease to

zero. From Eq. 4.8, the parallel and perpendicular energy can be written as,

E⊥f = E⊥i − vθi
eB

2c
r +

e2B2

8mc2
r2, (4.9)

E‖f = E‖i + vθi
eB

2c
r − e2B2

8mc2
r2, (4.10)

where E‖f is a result of energy conservation.

4.5.2 Effect of the extraction on the beam distribution

function

While the previous section discussed the single particle dynamics during

the magnetic extraction process, the beam consists of many particles with a dis-

tribution of positions and energies. Discussed here is the effect of the magnetic

extraction on these distributions.

The linear scaling of initial and final radii following the slow magnetic field

reduction (i.e., rf = ri
√
Bi/Bf) preserves the shape of the beam profile while

rescaling the transverse dimension, namely σbf(rf) = σbi(rf
√

Bf/Bi). In the fast

extraction, the radial positions of the particles do not change (i.e., rf = ri) causing

the areal density profile to also remain unchanged [i.e., σbf(r) = σbi(r)].
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The modifications to the beam energy distribution function are more com-

plicated. The final energy distribution after the transition to low magnetic field

ff(E‖f , E⊥f) can be obtained from the initial distribution fi(E‖i, E⊥i) using Eqs. 4.6

and 4.7 to perform the required coordinate transformation. However, in many if

not most cases, only knowledge of the mean energy and the rms energy spread

is required, namely (Ej ≡< Ej >) and (ΔEj ≡ √
< (Ej− < Ej >)2 >), where j

indicates the components of the ||, ⊥, and total particle energy. These moments

of the distribution can be calculated by averaging the appropriate function from

Eqs. 4.6 and 4.7 over the original distribution fi. This is made possible because

E‖f and E⊥f are functions of E‖i and E⊥i (and vθi) only.

The first moments of ff after a slow magnetic reduction are,

E‖f = E‖i + E⊥i

(
1− Bf

Bi

)
, (4.11)

E⊥f = E⊥i
Bf

Bi
. (4.12)

The second moments are,

�E‖f =

√
�E2

‖i +�E2
⊥i

(
1− Bf

Bi

)2

, (4.13)

�E⊥f = �E⊥i
Bf

Bi

. (4.14)

Although E‖f , E⊥f , �E‖f , and �E⊥f change, the total energy E and the rms

energy spread �E remain constant because the magnetic field does no work. The

same is true for the fast magnetic extraction, described below.

Considering now the effect of the fast extraction on the energy distribution,

the radial dependence of the beam distribution must be included, since Eqs. 4.9

and 4.10 depend on r. With this in mind, ff(E‖f , E⊥f , rf) after the fast extraction

can be obtained by another coordinate transformation, this time using Eqs. 4.9 and

4.10. However, this transformation must be performed in velocity space because

vθ appears explicitly in Eqs. 4.9 and 4.10.

Similar to the slow reduction in the field, the moments of ff after the fast

extraction are obtained by averaging functions of the quantities defined in Eqs. 4.9
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and 4.10 over the original distribution function fi(E‖i, E⊥i, ri). Using <>i to denote

this average (i.e., over E‖i, E⊥i and ri), the first moments of ff after a fast extraction

are,

E‖f =
〈
E‖i − e2B2

8mc2
r2
〉

i

, (4.15)

E⊥f =

〈
E⊥i +

e2B2

8mc2
r2
〉

i

. (4.16)

In Eqs. 4.15 and 4.16, we have used the fact that, for the gyromotion in the

perpendicular direction considered here, < vθi >i= 0 and ri = rf = r. The kick

δvθ transfers energy from the parallel to perpendicular direction.

The seconds moments of ff after a fast extraction are,

�E‖f =

〈(
E‖i − vθi

eB

2c
r − e2B2

8mc2
r2 − E‖f

)2
〉 1

2

i

, (4.17)

�E⊥f =

〈(
E⊥i + vθi

eB

2c
r +

e2B2

8mc2
r2 − E⊥f

)2
〉 1

2

i

. (4.18)

Similar to the transition to low field, although E‖, E⊥, �E‖, and �E⊥

change, the total energy E and the rms energy spread �E remain constant. Now,

for a given fi, we have all the information needed to find either ff or the first two

moments of ff following the slow reduction in, or fast extraction from, the field.

4.5.3 Results for a Gaussian radial profile and Maxwellian

velocity distribution

Moments of the distribution function

Knowledge of the initial beam distribution function is necessary to proceed

further. Chapters 2 and 3 described in detail the initial distribution functions for

the beams created here. If the beam is initially formed by extraction from a plasma

at temperature T and ξ ≤ 1, the initial beam distribution function can be written

as [65],
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fi(E‖, E⊥, r) ≈ 2e−E⊥/T

Tρ2b
fi(E‖) exp

[
−
(

r

ρb

)2
]
, (4.19)

where fi(E‖) is written symbolically for convenience. Procedures for calculating it

are described in Ch. 3. Equation 4.19 neglects correlations between r and E‖. These

correlations are only significant in describing the fast extraction process but are

negligible for the beams relevant here where ξ < 0.5. Where necessary, the velocity

distribution function fi(vz, v⊥, r) can be obtained by a coordinate transformation

using the expressions stated earlier.

Following the slow reduction in magnetic field, the linear scaling of the

radius of each particle discussed in Sec. 4.5.1 preserves the Gaussian form of Eq. 4.1

leading to a simple expression for the modified beam width,

ρbf =

√
Bi

Bf

ρbi. (slow extraction) (4.20)

For the fast extraction, the radial positions of the particles do not change

hence,

ρbf = ρbi. (fast extraction) (4.21)

Considering now the energy distributions, the modifications to fi after the

transition to low field or the fast extraction can be obtained by performing the

coordinate transformations described in Sec. 4.5.2 on Eq. 4.19. While this is rel-

atively complicated, much information is contained in the low-order moments of

the distributions. In particular, knowledge of only < r2 >1/2, E‖i, E⊥i, �E‖i, and

�E⊥i is needed to evaluate Eqs. 4.11-4.18. Further, all except the moments of the

parallel energy distribution are elementary, namely < r2 >1/2= ρb, E⊥i = T and

�E⊥i = T .

The quantities E‖i and �E‖i are more complicated due to plasma space-

charge effects (cf., Ch. 3). They have corrections of the order of the temperature

T of the trapped plasma that depend upon both the scaled beam amplitude ξ and

the scaled electrode radius RW/λD. For the specific case studied in Sec. 4.3 with

ξ = 0.4 and RW/λD = 500, E‖i ≈ |eVE|+ 3.1T and �E‖i ≈ 2.2T (cf., Ch. 3).
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For the slow reduction in magnetic field with the assumed beam distribution

function in Eq. 4.19, the first moments are obtained by evaluating Eqs. 4.11 and

4.12,

E‖f = E‖i + T

(
1− Bf

Bi

)
, (4.22)

E⊥f = T
Bf

Bi
. (4.23)

The corresponding second moments are obtained by evaluating Eqs. 4.13 and 4.14,

�E‖f =

√
�E2

‖i + T 2

(
1− Bf

Bi

)2

, (4.24)

�E⊥f = T
Bf

Bi
. (4.25)

Following the fast extraction (i.e., B → 0), the first moments of ff are

obtained by evaluating Eqs. 4.15 and 4.16,

E‖f = |eVE|+ E‖i − e2B2

8mc2
ρ2b, (4.26)

E⊥f = T +
e2B2

8mc2
ρ2b. (4.27)

The second moments of ff for this case are similarly found using Eqs. 4.17

and 4.18 along with Eq. 4.19,

�E‖f =

√
�E‖i + T

e2B2

4mc2
ρ2b +

(
e2B2

8mc2

)2

ρ4b, (4.28)

�E⊥f =

√
T 2 + T

e2B2

4mc2
ρ2b +

(
e2B2

8mc2

)2

ρ4b, (4.29)

Here we have used the fact that, for the gyromotion in the perpendicular direction

considered here, < v2θi >i= T/2m and < vθi >i= 0. Note that Eqs. 4.26-4.29 refer

to a fast extraction of the initial beams created here (i.e., that given by Eq. 4.19).

They assume that no slow reduction of the initial beam has occurred.
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Measure of beam quality

Once a fast extraction is performed, the beam is “electrostatic”. A key

measure of the quality of such a beam is the invariant emittance ε. To within

constants of proportionality, it is defined as the product of the rms spread in

radius times the rms spread in perpendicular velocities (or equivalently momenta)

of the beam [54],

ε =

√(
r2
) (

E⊥
)
. (4.30)

In the case considered here, where the beam particles are initially in a region

of non-zero magnetic field, the conservation of the canonical angular momentum

results in a large increase in perpendicular velocities when the beam is extracted

from the field. In this case, the relevant quantity is the so-called generalized in-

variant emittance, ε∗. For the Gaussian radial profile and Maxwellian velocity

distributions considered here, the value of E⊥ from Eq. 4.27 can be inserted into

Eq. 4.30 to obtain,

ε∗ = ρb

√
T +

e2B2

8mc2
ρ2b. (4.31)

Note that this equation is only valid for a cylindrically symmetric case and the

assumed Gaussian radial profile. A non-cylindrically symmetric system (e.g., ex-

traction through a high-permeability grid or radial spoke arrangement) would lead

to different results.

This quantity is invariant throughout the entire magnetic extraction process

and reduces to the standard emittance ε once the beam is in the field free region.

That ε∗ is conserved during the first magnetic reduction can quickly be seen by

inserting ρbf = ρbi
√

Bi/Bf , and Tf = Ti(Bf/Bi) into Eq. 4.31, then noting the

invariance.

While we do not find the expression of Eq. 4.31 for ε∗ in the literature, it

can be compared with [32],

ε ≈ ρb
√
T + ρb

√
e2B2

8mc2
ρ2b, (4.32)
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which was developed as an approximate expression for the fast extraction of a

thermal beam from a field of strength B. The formulas are in good agreement

when T � e2B2ρ2b/(8mc2) or T � e2B2ρ2b/(8mc2), but otherwise disagree.

Equation 4.31 is valid at all points during the magnetic extraction process.

Thus, for the beam creation and the two-stage extraction process considered here,

the emittance of the electrostatic beam is set by Eq. 4.31 at the point where the

beam is initially created (i.e., in the 4.8 T field).

Equation 4.31 can also be written in the physically insightful form,

ε∗ = ρb
√
T

(
1 +

(
ρb
2ρc

)2
)1/2

, (4.33)

where ρc is the cyclotron radius, ρc =
√

2T/m/(eB/mc). By definition, for a beam

in a magnetic field, ρb � ρc. Thus for a given T , ε∗ is always significantly larger

if the beam is born in a magnetic field. In a magnetic field of any strength, where

the terms T and e2B2/8mc2ρ2b appear as above [c.f., Eq. 4.31], the latter term is

dominant unless ρb ≈ ρc (i.e., the case of a weakly magnetized beam).

One of the utilities of the emittance is that it is conserved during an electro-

static focusing process. Thus it can be used to estimate the average perpendicular

beam energy E⊥ at the focal point. If a beam is focused in transverse width from

ρbi to ρbf , the average perpendicular energy will change as,

E⊥f = E⊥i

(
ρbi
ρbf

)2

. (4.34)

4.6 Summary and conclusion

In Chs. 2 and 3, we developed a technique to create high quality positron

beams in a 4.8 T magnetic field by pulsed extraction from a Penning-Malmberg

trap. It was demonstrated that one can use the tools available in such a UHV high-

field trap, namely rotating-wall radial plasma compression and cyclotron cooling, to

tailor plasmas and improve beam quality. This chapter expands on that work and

describes a procedure to extract these beams from the confining magnetic field to
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create a class of electrostatic beams. The beams were then focused electrostatically

to smaller transverse dimensions.

Table 4.1 summarizes the beam parameters during the magnetic extraction

and electrostatic focusing processes for VL = 6 kV, the lens voltage for which

maximum focusing was achieved. Values in the first stage are those measured in

the 4.8 T field. Values in the next two stages are obtained using Eqs. 4.20, 4.21,

and 4.22-4.29 along with energy conservation. Values in the final stage are from

measurements, and the conservation of ε∗ in Eq. 4.31. The value for Δr in the final

stage (IV) is an upper bound for the ≈ 55 % of the beam that makes it through the

aperture. The values for T are found from the relation T = E⊥i. In the focusing

region, the electrical potential is found to be constant as a function of r, causing

�E to remain unchanged from the value in Stage I.

Considering the values in Tab. 4.1, the fact that the initial value of �E‖ is

a factor of two larger than the plasma temperature is because ξ is not close to zero

(i.e., ξ = 0.4). Working at smaller values of ξ would bring �E‖ closer to T . The

increase in ρb during the slow extraction contrasts the relatively small increases in

�E‖, and large decrease in �E⊥. Similarly, during the fast extraction (Stage III),

Δr remains constant but �E‖ and �E⊥ increase significantly as a result of the

δvθ kick that the particles experience when exiting the field. Beneficially, during

the entire magnetic extraction and electrostatic focusing processes, �E remains

constant. Finally, the large increase in E⊥ that occurs at the focus of the Einzel

lens is a result of the conservation of the beam emittance ε.

At the present stage of development, the beam emittance is not significantly

greater than that obtained by taking a beam directly from a buffer-gas positron

accumulator (i.e., such as that which would be used to fill the HF trap described

here). However, the transverse beam width, and hence the beam emittance, is set

by the Debye length of the parent plasma in the high magnetic field. Colder, higher

density plasmas could be used to produce higher quality beams. Thus, the ability

to create cryogenic plasmas and potential improvements in RW compression can

be expected to create significantly better beams.

Considering applications to positron scattering, the present electrostatic
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Table 4.1: Beam parameters for a slow reduction from a 5 T field (I), to a 1 mT
field (II), followed by a fast extraction to zero field (III), and finally focus with
an Einzel lens (IV), of the beam in Fig. 4.3. VL = 6 kV and the invariant beam
emittance ε∗ is 0.3 cm-

√
eV. In stages I, II, and III, the beam is Gaussian and

Δr = ρb. See text for further details.

Stage I II III IV
B (G) 4.8× 104 10 0 0

ΔE‖ (eV) 0.22 0.26 0.51 −
ΔE⊥ (eV) 0.1 2.1×10−5 0.45 −
ΔE (eV) 0.24 0.24 0.24 0.24
E⊥ (eV) 0.1 2.1×10−5 0.45 6
Δr (cm) 6.5× 10−3 0.45 0.45 < 0.12

beams would be quite useful. The total energy spread of the beam is set by the

parent-plasma temperature and is preserved in the extraction process. For a single

particle, any change in E⊥ is accompanied by an equal and opposite change in E‖

to conserve energy; this effect keeps �E constant at all times during the magnetic

extraction process. Thus, the electrostatic beams created in this manner could be

used in energy-spectroscopy experiments that benefit from small energy spreads.

Plasmas with temperatures < 20 meV have been achieved using electrodes cooled

to ≈ 80 K, allowing for beams with �E < 30 meV. These beams could be quite

useful without further HF-trap improvements.

A high-permeability grid or spoke arrangement [57, 22] could be used to

significantly reduce the effect of the fast extraction on the particles without chang-

ing the initial magnetic field from which the beam is (fast) extracted. In essence,

this would reduce the kick received by the particles upon fast extraction, thereby

producing electrostatic beams with even lower emittance values.

Finally, using the procedures described here, remoderation techniques could

also be used to advantage to further reduce the beam emittance. However in this

case, the energy spread will be set by the characteristics of the (re)moderator and

the number of beam particles will be reduced.



Chapter 5

Rotating wall compression in two

tesla magnetic fields

5.1 Background

In a paradigm shift, this short final chapter documents a brief study of

rotating wall (RW) radial plasma compression in relatively low magnetic fields

(B = 2.0 T). While this study is far from complete, it documents a regime in

which RW compression becomes significantly limited when compared to the more

ideal behavior observed at higher magnetic fields (e.g., 3 ≤ B ≤ 4.8 T). As men-

tioned in Ch. 1, the RW is a valuable tool for two reasons: it enables fine tuning

of the trapped plasma density, and it allows for indefinite confinement times (e.g.,

τ ∼ days) by counteracting natural expansion of the plasma due to small trap

asymmetries. Unfortunately, the RW acts to significantly heat the plasma, partic-

ular when it is initially turned on [14]. If adequately strong cyclotron cooling is

not present, the plasma will heat to sufficiently high temperatures such that the

background neutral gas becomes ionized. Then, freshly created ions cause an ion

instability that destroys confinement [35]. At B = 5 T (τc = 0.16 sec), we have

successfully used the RW to compress plasmas to high densities (n > 2 × 1010

cm−3) using large RW frequencies fRW > 6 MHz while maintaining cold plasmas

(i.e., T < 0.1 eV) [12, 13, 14]. We here report a recent effort to operate the RW in

79
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lower fields, where cyclotron cooling is diminished.

5.2 Results

For operation of the RW in this experiment, see Sec. 1.3 or Ref. [13]. Al-

though a continuum of field strengths 0 < B < 5 T are accessible on this exper-

iment, we focus here on B = 2 T only. We choose this field because it appears

to be the onset of significant RW compression limitations, and it has been well

documented that the RW works well in larger fields [30, 13].

Figure 5.1 summarizes the results for RW compression in a 2 Tesla field

(τc = 1.0 sec). Here, the plasma parameters are Lp ≈ 10 cm and N ≈ 4 × 108.

Two modes of RW operation are plotted: a fast-ramp mode where the RW voltage

VRW is quickly (Δt < 10 μsec) ramped from 0 to 1.2 V, and a slow-ramp mode

where VRW is slowly (Δt ≈ 1 sec) ramped from 0 to 1.2 V. After either the slow-

ramp or fast-ramp mode, the RW is then left on until the plasma reaches a steady

state. Here, this time is ≈ 20 sec. For the fast-ramp mode of operation, the

plasma was only able to be compressed up to n = 3× 109 cm−3 without inducing

any plasma instabilities from ionization of the background gas. For the slow-ramp

mode, the plasma was able to be compressed to n = 4 × 109 cm−3. As discussed

below, this difference in steady-state density is possibly related to the fact that for

the slow-ramp mode, the plasma cools to lower temperatures once in steady-state.

In normal operation, the plasma spins up to approximately the applied

frequency fE = fRW. Here, this is seen until fRW = 2 MHz, at which point

noticeable “slip” appears, or a difference between the applied wall and plasma

rotation frequency fRW−fE . This is illustrated in Fig. 5.1, where the theoretically

achievable plasma density when fRW = fE is plotted. As mentioned above, at

roughly fRW = 2 MHz, slip begins to appear. In the slow-ramp mode of operation,

the slip appears only above fRW = 2.5 MHz. This may have some relation to the

increased heating observed and described below.

Also plotted in Fig. 5.1 is the plasma temperature as a function of fRW.

Notice that the plasma temperature increases approximately linearly with fRW.
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Table 5.1: The numerical values of Fig. 5.4

B(G) 1 1.5 2 2.5 3
τc theory (sec) 0.44 0.64 1.0 1.77 3.98
τc data (sec) 0.45 0.56 0.6 1.11 4.78

This contrasts the behavior seen at 5 T, where the temperature has been shown

to remain low (i.e., T ∼ 0.1 eV) and constant as a function of fRW [14]. For the

slow-ramp mode, the plasma reaches lower temperatures when it achieves a steady

state. A detailed explanation of this behavior requires further investigations that

will not be performed here.

For completeness, examples of the plasma profiles from Fig. 5.1 are plotted

in Fig. 5.2 for both the slow and fast modes of RW operation. Additionally, to

illustrate the expansion of the plasma, Fig. 5.3 shows the time evolution of the

plasma profiles after the RW has been turned off.

As mentioned above, when B ≤ 2 T, the RW becomes exceedingly difficult

to operate. For B = 1 T, even in a slow ramped mode of operation, compression

only occurs for fRW < 0.25 MHz. For fRW > 0.25 MHz, the plasma becomes

unstable.

On a different note, the measured cyclotron cooling times at magnetic fields

≥ 3 T agree well with the theoretical cooling rate. However at lower fields, the

rates depart significantly from the theoretical predictions. Figure 5.4 and Table

5.1 summarize these results. For B = 2 and 1.5 T, measured values of τc depart

significantly from those predicted by theory. At B = 1 T, measured values of τc

appear to return to the expected value. Presently, the reasons for this discrepancy

is unclear. Further work is needed to resolve this problem.

For completeness, an example of a data set used to extract a plasma cooling

time τc is shown in Fig. 5.5. Here, the plasma temperature after RW compression

is recorded for a series of times waited after turning the RW off. Just as in Fig. 5.3,

the RW is applied until the plasma achieves a steady-state, then turned off. An ex-

ponential is then fit to data to extract a 1/e falling time of the plasma temperature,

or τc.
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Figure 5.1: (a) the RW frequency fRW vs. the plasma density after application
of the RW for ≈ 20 sec. Data are plotted for both a fast-ramp (•) and a slow-
ramp (�) mode of RW operation. Theoretical predictions for fRW = fE are also
plotted (—). (b) The temperature of the plasma immediately after a steady state
is achieved with RW application. See text for details.
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Figure 5.2: Plasma profiles from Fig. 5.1 plotted for (a) fast-ramp RW operation
at fRW = 1.5 (· · · ), 2 (- - -), and 2.5 MHz (—); and (b) slow-ramp RW operation
at fRW = 2.5 (—), 3 (- - -), and 3.5 (· · · ). For the 3 plasmas in (a), λD ≈ 0.14
mm, while for the 3 plasmas in (b), λD ≈ 0.09 mm.
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Figure 5.3: Time evolution of the plasma profile plotted after the RW was applied,
a steady state reached, then the RW turned off and times waited of 0 (—), 0.5 (- -
-), 1 (- ··) and 5 seconds (· · · ). Here, the RW is operated in fast-ramp mode, and
fRW = 2 MHz.
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Figure 5.4: The measured cyclotron cooling times τc of the plasma (•) vs. the
predicted values (cross).
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Figure 5.5: An example of data used to extract a plasma cooling time τc. The
plasma temperature T is plotted vs. the wait time after RW application (•). The
exponential fit used to determine τc = 0.7 sec is included (—).
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5.3 Summary

We have shown that the RW can be used at magnetic fields as low as

B = 1 T. However, for significant compressions to densities n > 1 × 109, a field

of B ≥ 2 T is required. Further, slowly ramping up the RW voltage VRW permits

higher compression by avoiding ion instabilities and achieving lower temperatures

in steady-state. As mentioned above, the results presented here for B = 2 T are

far from complete. More systematic studies are warranted to explore the limits of

RW plasma compression in low magnetic fields along with the anomalous plasma

cooling times that are observed.



Chapter 6

Summary and concluding remarks

There are numerous exciting antimatter applications, but many are funda-

mentally limited by the antimatter source [2, 52, 45]. A lack of readily available,

bright positron sources has seriously hindered the development of positron ap-

plications and, in turn, the understanding of many aspects of positron physics.

Fortunately, advances in charge particle trapping allow for the creation of bright,

effective sources by accumulating large numbers of positrons in a electromagnetic

trap [59]. Specifically, recent advances in Penning-Malmberg traps (PMT) allow

for the confinement of large numbers of positrons (∼ 1010) for long periods of time

(τ ∼ days) [59]. With this new technology comes the challenge of creating high

quality beams from the trapped particles. For many applications, a large number

of trapped positrons is not sufficient: bright and cold positron beams are required.

For example, the creation of Bose-Einstein condensed positronium would require

a bright, narrow and cold beam to achieve sufficient densities of cold positrons for

positronium formation and condensation [45]. Positron atomic physics applications

require cold positron beams to obtain good energy resolution of positron-atom col-

lisions [3]. Finally, for a positron microscope, a narrow beam is necessary to obtain

good spatial resolution, for example, of a material surface [15]. For all these ap-

plications, the properties of a beam created from a trapped particle population is

critical. Adding to this demand is the desire to create beams in a nondestructive

and reproducible manner so as to efficiently use all of the trapped particles. This is

extremely important because of the potentially long trap times (∼ hours) required

88
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to load a high capacity trap from, say, a typical moderated radioactive positron

source.

This thesis has successfully demonstrated a procedure to create high quality,

tailored beams from electrons in a PMT that satisfy all of the above demands.

Beams are extracted in an approximately 100 % efficient manner with narrow

transverse widths (e.g., ρb < 20 μm), small energy spreads (e.g., �E ≤ 30 meV),

and high reproducibility (e.g., ΔNb/Nb ≤ 5 %). A solid physical understanding of

the beam extraction physics was demonstrated by using a simple model to derive

analytic expressions for the beam number Nb, transverse spatial profile σb(r), and

complete energy distribution function f(E‖, E⊥). The transverse spatial width of

the beams was shown to be set by the Debye length of the parent plasma, namely

ρb = 2λD

√
1 + ξ. For small ξ, the beam width is ≈ 2λD, while for larger ξ, the

beam width increases. The radial distribution of the beam is Gaussian for all

beams with ξ < 1. The energy distribution function, when scaled to the plasma

temperature, was shown to depend only on ξ and RW/λD. For small ξ, the beam

energy spread �E is approximately the temperature of the parent plasma T. For

larger ξ, the energy spread increases, but only by moderate amounts. The larger

RW/λD, the faster �E increases with ξ. The main take home message here is that

for ξ < 0.5, beams are small (i.e., ρb ≈ 2λD) and cold (i.e., �E < 2.5T ). It is

possible to obtain beams of ξ < 0.5 by either limiting the total number of escaping

particles Nb, or increasing the plasma length Lp.

Although these beams are created in a large magnetic field, it was suc-

cessfully demonstrated that electrostatic beams (beams in a magnetic field-free

region) can be created using this technique along with a slow reduction in, then

fast extraction from, the confining magnetic field. Further detailed analysis was

presented deriving properties of the electrostatic beams including the transverse

spatial profile, energy distribution function, and invariant emittance. Electrostatic

beams were then focused to smaller transverse dimensions while conserving the

initial energy spread �E of the beam in the high magnetic field. Although this

magnetic extraction process results in a large beam emittance increase, the to-

tal energy spread �E remains constant, and equal to that at the time of initial
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creation. Further, by using smaller initial beams, the emittance increase can be

minimized.

At this point, the trapped based positron beams described here offer im-

mediate improvements for current positron applications. However, there is still

potential for much improvement in both trapping and beam-creation techniques

to significantly improve beam quality. The most promising possibility is that of

creating cryogenic positron plasmas. Such cold plasmas would allow for dramati-

cally narrower (ρb < 5 μm) and colder (�E ≈ 10 K) beams. Previously, cryogenic

nonneutral plasmas have been achieved by submerging a PMT in a dewar of liquid

helium [5]. Unfortunately, submerging a trap in liquid helium is not compatible

with the demands of many positron applications. However, this difficulty can be

overcome by simply cooling the trap electrodes to cryogenic temperatures, approx-

imating the conditions of a submerged trap.

While the apparatus used here has this capacity, problems with the cryo-

genic system have prevented cooling the electrodes below 80 K. Further, due to

difficulties measuring low plasma temperatures, only an upper bound has been

placed on the plasma temperature of T ≤ 200 K. Results of beam extraction ex-

periments further suggest that the plasma is no colder then 200 K. This implies

that external heating sources in the trap overcome cyclotron cooling at 200 K.

Possible external heating sources are small trap asymmetries, plasma expansion

heating, or room temperature black body radiation entering from the ends of the

trap. In the future, if cryogenic positron plasmas are to be achieved for the purpose

of trap-based positron beams, these external heating sources must be addressed.

One possibility may be to trap the beam in neighboring trap electrodes immedi-

ately after is is formed. This would eliminate plasma expansion heating, and other

effects related to the large plasma potential, allowing the beam to cool to lower

temperatures in perhaps a more quiescent state. Additionally, it may turn out

that RW compression is more effective on a small beam close to the plasma limit

(i.e., λD ≈ Rp). In this case, further RW compression could be achieved on the

trapped beam.

Another way to increase beam quality is by pushing the limits of RW com-
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pression. This will both further decrease the width of the beam by decreasing

the Debye length of the parent plasma, and increase beam brightness. On this

experiment, RW compression is currently limited to roughly fRW ≈ 6 − 8 MHz.

There are two possible reasons for this limit. First, an imbalance in the 4 electrode

sectors and their corresponding circuits may lead to small phase shifts that limit

RW compression at high frequencies. Secondly, the capacitive load of an RW sec-

tor on the end of the transmission line may significantly attenuate the RW signal

on the sectors at high frequencies. This would further limit RW compression at

high frequencies. In order to compress plasmas at RW frequencies > 8 MHz, a

methodical investigation must be made of the two above effects in order to pin

down the source of the current RW limitation.

Both of the above techniques would improve the electrostatic beams created

here, as the invariant beam emittance decreases with decreasing ρb. In addition

to this, in the case of electrostatic beams, there is also the possibility of extracting

the beam through a magnetic grid or spoke arrangement [22]. Such a magnetic

extraction would decrease the perpendicular kick experienced by the beam particles

as they exit the magnetic field. This could dramatically decrease the final beam

emittance of the electrostatic beams.

This work suggests that trapped based positron sources have an exciting

potential role in future antimatter research. With further improvements in trap-

ping tools, there is the potential for cryogenic positron beams with small energy

spreads (e.g., �E ≤ 10 K), and small transverse spatial extents (e.g., ρb ≤ 5 μm)

[59]. Even with current trapping technology, trapped based positron beams appear

to be of considerable worth to the future of positron applications.
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