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ABSTRACT

Inviscid spatial Landau damping is studied experimentally for the case of oscillatory motion of a two-dimensional vortex about its elliptical
equilibrium in the presence of an applied strain flow. The experiments are performed using electron plasmas in a Penning–Malmberg trap.
They exploit the isomorphism between the two-dimensional Euler equations for an ideal fluid and the drift-Poisson equations for the plasma,
where plasma density is the analog of vorticity. Perturbed elliptical vortex states are created using E� B strain flows, which are generated by
applying voltages to electrodes surrounding the plasma. Measurements of spatial Landau damping (also called critical-layer damping) are in
agreement with previous studies in the absence of an applied strain, where the damping is due to a resonance between the local fluid motion
and the vortex oscillations. Interestingly, the damping rate does not change significantly over a wide range of applied strain rates. This can be
accurately predicted from the initial vorticity profile, even though the resonant frequency is reduced substantially due to the applied strain.
For higher amplitude perturbations, nonlinear trapping oscillations also exhibit behavior similar to the strain-free case. In principle, higher-
order effects of the applied strain, such as separatrix crossing of peripheral vorticity and interactions with harmonics of the fundamental res-
onance, are expected to change the damping rate. However, this occurs only for conditions that are not realized in the experiments described
here. Vortex-in-cell simulations are used to investigate the possible roles of these effects.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0086227

I. INTRODUCTION

Rotational fluid structures known as vortices are common
features of flows in geophysical1–4 and astrophysical5–7 fluids and
magnetized fusion plasmas,8,9 and they often have profound conse-
quences for transport properties. In many cases, they are subject to
external shear and strain flows, which can cause vortex deformation
and destruction.10–13 An applied strain flow is considered here rather
than applied shear due to experimental convenience and the impor-
tant role of strain flows in vortex dynamics.10,12,14 Vortices are often
subject to external strain flows due to other nearby vortical structures,
e.g., in many types of turbulent flows and at the poles of Earth and
other planets. Both strain and shear are known to cause elliptical vor-
tex deformations and dynamical oscillations, although the shear has
the complication of a sign relative to the vortex rotation.10 In the pres-
ence of strain flows, perturbations on vortices can undergo so-called
inviscid damping in which the perturbation resonates with elements of
vorticity that are at some distance from it.15–18 In this paper, the pro-
cess of inviscid damping of perturbations on two-dimensional (2D)

vortices in an ideal, inviscid fluid is studied in experimental and
numerical simulations with and without externally imposed strain
flows.

The experiments exploit the isomorphism between the 2D Euler
equations (1) describing an inviscid incompressible fluid and the
Drift–Poisson equations (2) describing the E� B drift of an electron
plasma in a strong magnetic field,15,19

@

@t
�rw� ẑ � r

� �
x ¼ 0; r2w ¼ x; (1)

where x ¼ ðr� vÞ � ẑ is the vorticity and w is the fluid stream func-
tion, which is related to the velocity by v ¼ �rw� ẑ , and

@

@t
� 1
B
r/� ẑ � r

� �
n ¼ 0; r2/ ¼ en

e0
; (2)

where n is the electron density, / is the electric potential, B is
the magnetic field strength, e is the electron charge, and e0 is
the permittivity of free space. The plasma density is the analog of
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vorticity, and the electrical potential is the analog of the fluid
stream function.

Previous studies of vortex dynamics in plasmas investigated the
free relaxation of a vortex subject to asymmetric perturbations.15,16 A
disturbance on a quasi-flat vortex (i.e., a roughly constant interior
vorticity profile with a steeper edge gradient) was found to excite a
wave packet or quasi-mode which causes the disturbance ampli-
tude to decrease due to dephasing. This phenomenon is referred to
as critical-layer or spatial Landau damping in analogy with the
well-known kinetic treatment of plasma wave damping.17,20 Once
the initial decay of the perturbation saturates, an algebraic decay
ðt�kÞ is predicted at later times;21–23 however, recurrence of the
perturbation due to vortex-element trapping is commonly
observed.16,24 Others have studied the damping of perturbations in
a weak strain field rotating with the vortex18 and a vortex in a
strain field that oscillates slowly with respect to the vortex rotation
frequency.25 In the work presented here, the decay of perturbations
on a vortex is examined both with and without an externally
imposed, non-rotating strain flow with a magnitude that is varied
up to near the stability limit.14 Surprisingly, it will be seen that the
applied strain does not change the measured damping rate.

For an elliptical vortex having a flat-top vorticity profile (a so-
called vortex patch) subject to a constant strain flow, the equilibrium,
the stability condition,14 and the exact solution for the dynamics10

have been studied theoretically. Near the strained equilibrium, an ellip-
tical vortex rotates or nutates about equilibrium with a reduced fre-
quency that approaches zero as the strain is increased. The vortex
loses stability through a saddle-node bifurcation at a strain-to-vorticity
ratio of approximately 0.15. For a smoother vorticity profile, a multi-
patch model was developed to describe the evolution of nested or sepa-
rated patches under strain.12,13

For realistic vorticity profiles with finite edge gradients (e.g., a flat
core with a lower vorticity outer halo), the strain modifies the equilib-
rium orbits of the vortex elements in the halo. As a result, any wave-
like disturbance is seen by the vortex element as perturbed and con-
taining higher harmonics. Multiple resonant layers are introduced
when the wave frequency is a multiple of the orbital frequency of the
vortex element. For monotonically decreasing profiles, the higher-
order resonances occur at larger radii. It is shown here that these reso-
nances are pushed toward the separatrix, and they do not contribute
significantly to the evolution of the quadrupole moment.

An analogous effect has been described in non-neutral plasma
studies, where multiple resonances contribute to bounce-harmonic
Landau damping of Trivelpiece–Gould waves.26,27 In those studies, the
equilibrium density and potential were modified by an applied squeeze
potential using a cylindrical electrode, thus creating an axial barrier
inside the plasma. The axial potential variation in that work is analo-
gous to the azimuthal potential variations here. However, the bounce-
resonant velocity space Landau damping is stronger since the reso-
nance criterion is xbðEÞ ¼ x=n with wave frequency x greater than
the bounce frequency xbðEÞ. Bounce harmonics n> 1 allow the reso-
nance condition to be satisfied for particle energies within the
Maxwellian distribution. The difference in 2D Euler flow is that the
m¼ 2 mode frequency is lower than the dynamical frequency for par-
ticles in the vortex (i.e., an orbital frequency around the vortex center),
rather than higher, and so harmonics n> 2 have fewer resonant par-
ticles rather than more.

In the work described here, the momentum of the electron is
dominated by the magnetic vector potential (i.e., / r2), so the action-
angle coordinate is a canonical transform from the spatial coordi-
nate.28,29 This is the basis for the analogy between spatial Landau
damping and the usual kinetic Landau damping.

The experiments described here use a specially designed
Penning–Malmberg trap (described below) to impose a uniform non-
rotating external E� B strain flow on electron plasmas, where the
flow is generated by applying voltages to the trap electrodes. The capa-
bilities of this 8-Segment Trap (8ST) have recently been exploited to
study several 2D vortex dynamical processes.30–34 As described in Sec.
III, the work presented here exploits the fact that the spatial profile of
a vortex, and hence vortex-perturbation damping rates, can be varied
by adjusting the plasma fill procedure. This control of the damping
rate is a key extension over previous work and enables the comparison
between the simple damping at a narrow resonant radius.16 This has
allowed us to identify the regimes of applicability of each and to do the
comparison of the damping and associated nonlinear trapping oscilla-
tions for strain-free vs strained vortices.

This paper first describes a study of the critical-layer damping
of a wavenumber m¼ 2 perturbation on a vortex in the strain-free
case and investigates the dependence of the damping on the profile
of vorticity outside the vortex core. Then, the damping of these
vortex perturbations is studied in the presence of an imposed
strain flow. Unexpectedly, it is found that the damping rate
remains unchanged in the presence of strain, while the frequency
of oscillation of the perturbation is reduced. The unchanged damp-
ing rate is explained using an eigenmode analysis of the strained
equilibrium. In the phase space of the plasma, the action is invari-
ant when the electric field perturbations are applied adiabatically.29

Because the physical space and phase space are identical for 2D
ideal fluid,28 the vortex elements at the first resonance undergo the
same dynamics, preserving the damping rate. At later times, trap-
ping oscillations are observed until the separatrix of the flow field
approaches the critical damping layer. Additional damping due to
the evaporation of vorticity elements and higher-order resonances,
which are observed in numerical simulations, are discussed.

II. THEORY

Free or isolated vortices tend to be circular, and most theoretical
studies have focused on damping toward an axisymmetric equilib-
rium. However, with the application of the non-rotating external strain
field with the stream function

wext ¼
1
2
eðx2 � y2Þ; (3)

where the spatial coordinates are scaled to the wall radius rw and e is a
strength of the applied strain, a different approach is necessary. The
azimuthal symmetry is broken and the stable equilibrium becomes
elliptical. Figures 1(a) and 1(b) show a linear vorticity map with
x0 ¼ 186 krad/s for a near equilibrium plasma in two different strain
fields. Gray lines show the calculated stream function contour lines for
the total flow, green lines show the first resonance layers, and black
lines show the separatrices. It is useful to describe a perturbative evolu-
tion from this new equilibrium using an action-angle variables,
ðr; hÞ ! ðI;uÞ, where
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I ¼
þ
r2dh; (4)

and

u ¼ Xr

ð
ds=vðsÞ; (5)

where I is the canonical action of a vorticity element (i.e., the area
enclosed by the orbit), u is the canonical angle of a vortex element
(equivalent to a scaled time in the orbit), s is a distance along the vor-
tex element trajectory, and Xr is rotation frequency defined by
Xr ¼ 2p=Tr , where Tr is the orbit period. Note that here, and
throughout this paper, all time-related variables (i.e., time, frequency,
growth rates, and strain) are normalized by the central vorticity x0.

To describe perturbations from the equilibria, we write x ¼ xeq

þ dx and w ¼ weq þ dw. Then, the linearized Euler equations in
canonical action-angle variables are

@

@t
dxþ Xrðe; IÞ

@

@u
dx� @

@u
dw

@

@I
xeqðIÞ ¼ 0; (6)

r2dw ¼ dx; (7)

whereXrðe; IÞ � @Iweq is the rotation frequency.
As discussed in Sec. III, the two protocols illustrated in Fig. 1(c)

are used to apply the strain. A square-wave step is used to decrease the
strain from a larger value ð�1Þ to zero, and an increasing linear ramp
and hold ð�2Þ is used to set the strain at a finite value.

�1ðtÞ ¼ �iHðth � tÞ; (8)

�2ðtÞ ¼ �iðt=thÞHðth � tÞ þ eHðt � thÞ; (9)

where �i, and e are the strains, th is the start of the holding time, and H
is a Heaviside step function. Examples of these functions are shown in
Fig. 1(c).

The strain protocol �1 is used to excite elliptical vortex defor-
mations and then study strain-free damping, whereas �2 is used to
adiabatically prepare a strained vortex state near the elliptical

equilibrium in order to study damping in the presence of an
applied strain.34

For free relaxation ðe ¼ 0; I ! r;u! hÞ, the quasi-mode
damping rate of a quasi-flat vortex can be calculated analytically using
Eqs. (6) and (7). Briggs, Daugherty, and Levy (BDL)15 derived the ana-
lytic expression, shown in Eq. (10), by substituting Eq. (7) into Eq. (6)
and applying an inverse Laplace transform to solve the initial value
problem. With the assumption that the initial plasma is quasi-flat with
a weak negative-gradient halo, BDL evaluated the dispersion relation
by defining a deformed analytically continued Bromwich contour and
calculating the principle part of the integral from an imaginary pole.15

The damping rate (cBDL) is

cBDL ¼ �
p
4m

r0x
0ðrcÞ

r0
rc

� �2m�3
1� rc

rw

� �2m
" #2

; (10)

wherem is the azimuthal mode number of the wave, r0 is the radius of
the vortex, x0ðrÞ is the radial derivative of the vorticity, and rc is the
critical radius at which the resonance occurs. In this paper, we focus
on perturbations withm¼ 2.

The BDL approach depends on the local vorticity at the critical
layer. A second approach, that is global in radial coordinate, is the
eigenmode theory of Schecter et al.16 These authors generalized the
first approach to describe an arbitrary initial profile with a monotoni-
cally decreasing density. They decomposed the perturbation in terms
of a Fourier series in polar coordinates ðr; hÞ. The result is that each
azimuthal mode m decouples. The excitability spectrum is calculated
by solving an eigenvalue equation I½n� ¼ �n, where n is an eigenvec-
tor, � is an eigenvalue frequency, and I is a linear operator, derived
from Eqs. (6) and (7) and defined as

I n½ � ¼ 2XrðrÞnðrÞ �
2
r
x0eqðrÞ

ð
dr0r0Gðrjr0Þnðr0Þ: (11)

Here, G is the Green’s function for the Laplacian, incorporating the
boundary condition dw ¼ 0 at the wall. The excitability is then
defined as16,35

FIG. 1. (a) and (b) Cross section of the electron plasma with applied non-rotating strain boundary þV (red) and – V (blue). The strains applied are (a) e ¼ 0:036 and (b)
e ¼ 0:073. The first resonant layers are indicated with green lines and the separatrices with black lines. (c) Two time-dependent strain protocols: a square pulse (�1) and a lin-
ear ramp and hold (�2).
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Xk ¼

ð
drr3nð

drr2n2=jx0eqðrÞj
: (12)

Experimental data, xðrÞ, comes in through x0ðrÞ and XrðrÞ,
which is an unperturbed orbit rotation frequency and is an integral of
xðrÞ, i.e., XrðrÞ ¼ ð1=r2Þ

Ð r
0 dr

0r0xðr0Þ. The damping rate can be cal-
culated from the width of the excitability spectrum, assuming that the
spectrum is Lorentzian, i.e., Xk � 1=½ð�k � �dÞ2 þ c2�, where Xk is the
amplitude of an exciting mode, �k is mode frequency, �d is the center
of the spectrum, and c is the spectrum width.

In the presence of an external strain, the damping rate is expected
to depend upon Xrðe; IÞ; @udw, and @IxeqðIÞ. The exact analytical
expression is not known. However, for an m¼ 2 perturbation, it can be
measured experimentally by calculating a quadrupole momentQ from

QðtÞ ¼
ð
d2rr2e�2ihdxðtÞ; (13)

ImðQðtÞÞ ¼ Qeq þ Q0e
�ct sin ð�dt þ h0Þ; (14)

where Qeq is the quadrupole moment at the equilibrium and �d is an
oscillation frequency of the quadrupole moment. Equation (14)
describes the behavior of the imaginary part of Q in a strain strain
field. For a vortex patch near the strained equilibrium, Moore and
Saffman (MS)14 calculated the frequency ~�d

~�2d ¼
1
4

2mk

k2 þ 1
� 1

� �2

� k� 1
kþ 1

� �2m
" #

; (15)

~�d � ð1=2Þ 1� 16e2 � 100e4 þOðe6Þ
� �

; (16)

where k in Eq. (15) is the aspect ratio of the elliptical vortex patch at
the equilibrium. Equation (16) shows the approximate dependence of
~�d on the strain form¼ 2. For a smooth vortex, �d < ~�d .

A strained equilibrium can be achieved by adiabatically increasing
the strain flow to a final strain value.34 For a quasi-flat initial profile, a
simple external strain flow transforms a circular vortex core into an ellipse
that rotates or nutates about the equilibrium. In equilibrium, the contour
of the vorticity and the stream function is coincident [i.e.,x ¼ xðwÞ].

With applied strain, the equilibrium spatial distribution of the
vorticity (or plasma density) differs than that without strain. However,
in action-angle coordinates, xðIÞ, and consequently @IxðIÞ, are the
same in both cases due to adiabaticity. In contrast, the vortex element
orbit is modified by the strain and is approximately elliptical for an
m¼ 2 strain flow sufficiently far from the separatrix. The orbit fre-
quency ðXrÞ is modified by the strain in the same way as the vortex
element on the boundary of the vortex,12 i.e.,

Xrðe; IÞ ¼ I0=ð2IÞ � 8e2 þOðe4Þ: (17)

For a vortex patch, the orbit frequency at the vortex boundary matches
the nutation frequency of the ellipse, i.e., Xrðe; I0Þ ¼ ~�dðeÞ, where
~�dðeÞ is given by Eq. (16). Note that this condition is different than
the resonance condition, which involves the angular symmetry num-
ber n described later in Eq. (19).

Until now, the focus has been on the dominant perturbation of
the core. However, if an m¼ 2 distortion is introduced on the surface
of the vortex, vortex elements in the halo not only experience an n¼ 2

perturbation to their potential along the orbit, but also n ¼ 4; 6; 8;…;
perturbations due to the added strain, where n is the potential-
perturbation mode number. Here, n is restricted to even integers due
to the e2ih symmetry of the strain.

Non-strained vortices do not experience these higher-order har-
monics. Even though the vortex element rotation frequency decreases
away from the vortex, there are no n> 2 perturbations for streamlines
that match multiples of the nutation frequency.

The perturbation of the stream function can be written as the
expansion

dwðm;nÞðI;uÞ ¼
X
n

X
m

Aðm;nÞðIÞeinu; (18)

in terms of the expansion coefficientsAðm;nÞðIÞ.
The n¼ 2 perturbation dominates for I near the vortex core,

while the n> 2 perturbations become important at larger values of I
closer to the separatrix (i.e., where the fluid moves more slowly). The
resonance condition is

�d;mðeÞ ¼ nXrðe; Ic;nÞ; (19)

where �d;mðeÞ is the frequency of the quasi-mode, m and n are even
integers, and Ic;n is the critical action of a nth-order resonance. For
monotonically decreasing profiles, this implies that the higher-order
resonances occur at larger radii. Thus they are pushed toward the sep-
aratrix, and they do not contribute significantly to the evolution of the
quadrupole moment.

If the resonances overlap, then the motion of vortex elements can
become chaotic. This phenomenon is known as the stochastic instabil-
ity or Chirikov criterion.36 This is a general mechanics result with
applications in plasma physics37 as well as planetary orbits.38 Its effect
on the vortex damping is presently unclear and beyond the scope of
the work discussed here.

For a quasi-flat vortex with a small halo close to the vortex core,
the major contribution of the wave–vorticity interaction comes from
the lowest-order resonant layer, (n¼ 2). In this case, Að2;2ÞðIÞ ¼ 1=I,
and it shares the same dependence on I as Xrðe; IÞ. At the first reso-
nant layer, this can be thought of as having an action-angle coordinate
that is a conformal mapping of the polar coordinate from the original
free-damping problem ðr; hÞ ! ðI;uÞ. The orthogonality is preserved
from the conformal map, and the distribution is preserved due to
adiabaticity.

The spatial coordinates outside of the strained elliptical core can
be conformally mapped to a complex stream function.12 The real and
imaginary components coincide with ðI;uÞ near the vortex core.
Equation (20) describes the mapping of this function onto the complex
stream function coordinates, where x0 is a central vorticity, A is the
area of the vortex core, w ¼ cosh�1ð�iz=cÞ, c is the focal length of an
elliptical core, and z ¼ x þ iy.

W ¼ x0A
2p

wþ 1
2
e�2w

� �
þ 1
2
ez2: (20)

However, this is only true due to the fact that the first resonance is
dominated by the n¼ 2 perturbation. The free case cannot be mapped
exactly into the strain case, because they are topologically distinct. The
mapping works only in an approximate sense, far enough from the
separatrix that the streamlines are quasi-elliptical. This mapping,

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 29, 052107 (2022); doi: 10.1063/5.0086227 29, 052107-4

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/php


although approximate, will be used in Sec. VD to investigate possible
higher-order resonances in the flow.

In addition to the linear dynamics, non-linear effects such as
trapping oscillation are also expected. The vortex forms satellite islands
in the rotating frame where vorticity is periodically trapped. For free
relaxation, the trapping frequency is16

x2
b ¼

m2

rc
j2dwðrcÞX0rðrcÞj: (21)

In Secs. III–VI, this formalism and the associated formulas devel-
oped here will be used to describe the damping rate ofm¼ 2 perturba-
tions on a vortex both during free relaxation and in an applied
external strain flow. The quadrupole moment will be used to monitor
the perturbation amplitude, and it will be compared to the predictions
of both BDL and the Lorentzian width of the excitability spectrum
obtained from the experimental vorticity profiles. Trapping oscilla-
tions are observed, and they are used to verify the restricted regime of
linear damping. Furthermore, numerical simulations will be used to
study n¼ 2 and n> 2 resonances in the halo in order to identify the
circumstances where they may affect the damping rate.

III. DESCRIPTION OF THE EXPERIMENT

The experiment is performed in the 8ST,30–34 which has the elec-
trode geometry shown in Fig. 2(a). The cylindrical electrodes sur-
rounding the plasma have a length L¼ 0.26m and radius rw¼ 13mm.
The applied magnetic field is B � 4.8T, and the background pressure
is 10–9Torr. Eight azimuthal electrode segments extend over the entire
plasma. Voltages Vðrw; hÞ, on these segments, are used to apply the
time-dependent strain flows illustrated in Fig. 1(c), where the total

flow field is shown superimposed on the measured vorticity map.
Clockwise from the top, the voltages are ð�V ; 0;þV ; 0;�V ; 0;
þV ; 0Þ. The magnitude of the resulting applied E� B quadrupole
strain flow is e � 1:8V=Br2w (SI units). The plasma is diagnosed by
accelerating the electrons onto a phosphor screen biased toþ5 kV and
recording the image with a CCD camera. The corresponding spatial
resolution of the vorticity measurement is 65lm/pixel.

The electron plasma has a temperature of T � 0:1 eV,31 lengths
of Lp ¼ 0.24m, number of particles of N ¼ 1:2� 108, and density of
n ¼ 3:0� 1013 m�3. The cyclotron frequency is fg¼ 134GHz, bounce
frequency fb¼ 300 kHz, E� B frequency fv¼ 20 kHz, and the colli-
sion frequency is fc � 3 kHz. These parameters satisfy the assumptions
of the plasma-fluid analogy.19 All of the experimental data presented
here are averages of three fill and dump cycles.

The time-dependent strains used here were defined in Eqs. (8)
and (9) with example waveforms shown in Fig. 1(c). The �2 protocol
features a small discontinuity at the end of the adiabatic ramp, which
gives rise to a perturbative oscillation about the equilibrium. The damp-
ing happens with a constant applied strain and the time dependent
strains of �2 are different ways to achieve the initial condition. The val-
ues �i; e; and th are chosen to keep the initial amplitudes of the pertur-
bation similar across the range of the holding strains e. Specifically,
referring to Fig. 1(c), for e < 0:040; �i ¼ 0:045 and th ¼ 2:9; and for
e > 0:040; �i ¼ e 2 ½0:045; 0:109� and th 2 ½2:9; 8:7�.

The initial symmetric radial density profile of the plasma (i.e., the
vorticity profile) consists of a quasi-flat core (rcore ¼ 3:5 mm) and a
small amplitude halo ðxhalo=x0 < 0:1Þ [cf. Fig. 2(b)]. This is accom-
plished using the rotating wall (RW) technique39 to tailor the core
plasma, while the vorticity halo is varied using radial transport con-
trolled by changing the time of the electron fill process, as illustrated in
Fig. 2(b).

The three vorticity profiles used in this work are shown in Fig.
2(b) where the slope at the resonant radius (labeled rc) increases as the
fill time is increased. Longer fill times result in more diffuse profiles
with larger gradients at the critical layer and thus stronger damping.
The central vorticity is only slightly modified, so the scaled time and
strain are approximately the same for the three profiles.

Using the profiles shown in Fig. 2(b), the slope at rc can be found
by fitting to a linear curve, and this can be used in Eq. (10) to obtain
the BDL predicted damping rate for each initial condition. Likewise, as
described above, the excitability spectrum can be found by integrating
the profiles and then fitting a Lorentzian to obtain the predicted cl.
The measured damping is found by imaging the vortex at variable
times after the application of the strains shown in Fig. 1(c). Then, the
amplitude of them¼ 2 perturbation at each time is obtained by calcu-
lating the quadrupole moment using Eq. (13). To minimize spurious
effects due to the noise floor of the images, the profiles shown in
Fig. 1(c) are clipped at the 8% level before applying the fit.

IV. FREE DAMPING ðe ¼ 0Þ
Vortex relaxation from an m¼ 2 perturbation on a symmetric

vortex is investigated using electron plasma in the 8ST device.30–34

Although this situation has been studied a number of times, a central
feature of the work presented here is the ability to tailor the initial
radial profile to be quasi-flat while also controlling the halo using the
plasma fill time, as shown in Fig. 2(b). This procedure results in chang-
ing the damping rate while nominally leaving the vortex core fixed.

FIG. 2. Schematic diagram of the experimental setup. (a) columnar plasma inside
the cylindrical Penning–Malmberg trap. Various sections of the trap are indicated:
(I, III, and V) for axial confinement, (II) 8ST electrodes for the fluid experiment, and
(IV) four-sector for RW. The electron gun and CCD are also shown. (b) The initial
plasma profile for different fill times: 3, 20, and 50 ms, with nðr ¼ 0Þ ¼ 3:2� 1013

m�3 and rw ¼ 13 mm. The resonance radius (rc) for each profile is indicated.
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The results are shown in Fig. 3(a), where the time dependence of
the quadrupole moment is measured for three different initial condi-
tions. Each data set is fit to an exponentially decaying quadrupole
moment given by QðtÞ ¼ Q0e�cot , with decay constant co. The nor-
malized quadrupole moment is �Q � QðtÞ=Q0.

The decay rate was obtained for a wide range of fill times, and
the resulting measured rates are shown in Fig. 3(b). The measurements
are compared to the two theoretical descriptions described in Sec.
II.15,16 Both approaches predict that the initial amplitude of the quad-
rupole moment decays exponentially. When the initial pulse is small
enough (k0 < 1:5), the decay rate is observed to be independent of the
initial amplitude (dc=c0 < 2%). The calculated BDL prediction (cBDL)
is obtained from the slope, and the Lorentzian width (cl) from the
excitability spectrum, for each fill time.

For weaker damping rates (fill times< 40ms), the measured
damping rate increases with fill time and agrees well with both predic-
tions. However, for longer fill times, the damping rate no longer
increases, and the measured rates diverge from the BDL predictions.
In these cases, the profile becomes smoother, and the approximation
of a simple perturbation is no longer valid. This can be seen by looking

at the excitability spectrum for longer fill times, as shown in Fig. 3(c).
For longer fill times, the perturbation is extended over a significant
portion of the profile, and the spectrum can no longer be described by
a simple Lorentzian nor by a narrow resonant layer. It should be
noted, however, that although the BDL approximation breaks down,
the width of the excitability (cl) is still observed to be close to the mea-
sured damping rate.

Finally, looking at the late time evolution for the weaker damping
cases in Fig. 2(c), it can be seen that the decay slows down and
reverses. This reversal is due to the trapping oscillations. The fre-
quency of the trapping oscillations is observed to be proportional to
the square root of the amplitude as is predicted theoretically.16

The results in this section are consistent with prior work, and
they (empirically) identify the range of parameters in which these the-
ories are valid. The more complicated and novel case of damping in an
applied strain field is investigated in Sec. V.

V. STRAINED DAMPING ðe > 0Þ
In this section, the damping of a quadrupole perturbation in the

presence of an applied strain is investigated. Experimental measure-
ments of the damping and trapping oscillations are presented. They
show that, to the lowest order, the damping and trapping are indepen-
dent of the applied strain. Simulations are described to probe the limits
of this independence. They are also used to investigate the evaporation
of vorticity across the separatrix and the influence of higher-order res-
onances on the flow field.

A. Experimental results for quadrupole perturbations

A quadrupole perturbation is created on an initially axisymmetric
vortex using the protocol �2 shown in Fig. 1(c). In this case, the vortex
is adiabatically strained to an initial amplitude of ellipticity, and then a
second (smaller) static strain is applied. The distorted vortex oscillates
about the equilibrium defined by the static strain and damps toward
that equilibrium. The focus here is to investigate the manner in which
the damping rate is changed due to the amplitude of the static strain.

The time dependence of the amplitude of the quadrupole pertur-
bation in the direction of the strained equilibrium [Im(Q)] is shown in
Fig. 4 for various values of the applied (static) strain ranging from
�2 ¼ 0 to 0.11. The initial plasma was prepared with a fill time of
30ms, which was shown in Sec. III to give results that, in the free case,
agree well with the theory for the unstrained case. The top curve shows
the free case for �2 ¼ 0, and the bottom curve corresponds to the high-
est strain studied, �2 ¼ 0:11. For comparison, the maximum stable
strain for a flat vortex is � ¼ 0:15.14 However, this maximum is
reduced when either the strain is applied dynamically or the profile is
smooth,30 as is the case here. Thus, the maximum strain case studied
here is close to the stability limit.

The time dependence of the quadrupole moment data shown in
Fig. 4 can be fit to a damped oscillator as described by Eq. (14). Each
fit provides a measure of the damping rate c and oscillation frequency
�d. The measured fit parameters are shown vs the applied strain in
Figs. 5(a) and 5(b). For these data, the measured unstrained quasi-
mode frequency is �d ¼ 0:465 and c ¼ 0:0326 0:005. Note that the c
value here is slightly different than that in Fig. 3(b) for a fill time of
30ms because of differences in other experimental parameters.

As described in Sec. II, the unstrained damping rate is calculated
using the BDL expression and the eigenvalue method of Schecter

FIG. 3. (a) Experimental data for the time dependence of the quadrupole moment
for fill times of 3 (blue, (, solid), 20 (orange, �, dash), and 50 (green, �,
dashdot) ms; (b) comparison between cBDL, cl, and co for fill times 3–75ms. Dash
line represents a slope of 1.4 s–1, and (c) the excitability spectrum calculated using
Eq. (12) for the three fill times in (a).
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et al.16 The excitability spectrum is then calculated, similar to the ones
shown in Fig. 3(c). As discussed above, because the spectrum is not
well represented by a Lorentzian, there is a larger uncertainty in the
value of cl, and this is shown as the shaded gray rectangle in the figure.

The measured oscillation frequency is shown in 5(b), and it is
compared to the predicted frequency from Eq. (16) which is shown as
the solid line. As expected, the rotation frequency of the strained vor-
tex is smaller than that of an unstrained vortex. The theory curve does
not match exactly because it was derived assuming an ideal flat vortex,
whereas the smoothness of the experimental profile slightly reduces
the rotation frequency.

To summarize the results for the strained case, the observations
show that, while the frequency of the mode decreases with strain as
expected, the damping rate is independent of the value of the strain. In
action-angle coordinates, the vortex elements at the first resonance
experience the same dynamics from the wave regardless of the
strength of the strain [Eqs. (6) and (7)]. The lack of variation with
strain is also thought to be due to the absence of a vorticity gradient at
higher-order resonances, as well as the lack of vorticity separatrix
crossing due to intentionally small vortex perturbations. The role of
these effects are discussed further in Secs. V B-D.

B. Trapping oscillations

Trapping oscillations, which are a well known nonlinear effect
associated with spatial Landau damping, are commonly observed in
experiments.16,24 They involve the transfer of vorticity into and out of
stream function islands in the frame rotating at the vortex oscillation
frequency �d. The frequency of these oscillations is proportional to the
square root of the wave amplitude.24 The frequency is estimated in
Briggs et al.,15 and the result is given in Eq. (21). These oscillations were
observed earlier, even for the weakest damping in the strain-free case.
Here, we investigate the late time behavior of a mildly strained vortex.

Figure 6(a) shows the long-time evolution (�50 rotations) of
both components of the quadrupole moment (Im(Q) and Re(Q)) for a
strained vortex at e ¼ 0:025. Both curves are normalized to the initial
quadrupole moment. Since Im(Q) is the component aligned with the
strain axis, it oscillates about the equilibrium Qeq, whereas Re(Q) oscil-
lates about zero.

There are not enough data to do a fit to Eq. (14), as was done in
the Sec. V A. However, the equilibrium quadrupole moment can be
subtracted to obtain the magnitude of the relative normalized quadru-
pole moment, and these results are shown in Fig. 6(b). The dashed line
at early times represents the initial decay rate predicted by the width of
the excitability spectrum. At later times, Q(t) oscillates with a period of
t � 160, in agreement with Eq. (21). This and the subsequent recur-
rences are due to trapping oscillations. Even though trapping is
observed, the data are in the regime c > �d , which is required for an
initial exponential damping to take place.16

Although the measurements are limited to fairly small strain
rates, the results show that the trapping oscillations, as was true for the
linear damping rate, are in the lowest order also independent of the
magnitude of the strain.

C. Evaporation

As the separatrix moves closer to the vortex core, the trapping
oscillation amplitude can excite trapped elements of vorticity across

FIG. 5. (a) The fitted decay rate of the quadruple moment; and (b) the fitted mode
frequency. The shaded region in (a) indicates the width of the excitability spectrum
of the initial condition, and the gray line in (b) is the discrete frequency of an ideal
flat vortex ~� d from Eq. (16).

FIG. 4. Evolution of the quadrupole moment normalized by its initial amplitude and
shifted vertically for visibility for strain values e ¼ 0� 0:11. The top curve is the
free case (e ¼ 0), and the bottom curve is the highest strain value, e ¼ 0:11. The
solid lines are fits the data using Eq. (14).
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the separatrix. The lost vorticity carries angular momentum and thus
provides an additional (evaporative) damping mechanism. Numerical
simulations were used to study this effect. They solve the 2D Euler
equations (1) using a particle-in-cell algorithm with Runge–Kutta
fourth order time-advance method.32,40 The simulations are executed
on a 600� 600 grid with 106 particles, and a time step Dt ¼ 0:4. As in
the experiments, the simulations monitor the quadrupole moment for
different evolution times. The particles that cross the separatrix are
identified, and the number that flows to the wall (Nw) are recorded.

Figure 7 shows the results from a series of numerical simulations
of the time dependence for an initially flat-top vortex in the range of
larger strains, e ¼ 0:06–0:11. At these values of strain, the proximity
of resonant layer(s) to the separatrix results in elements of vorticity
crossing the separatrix (i.e., carrying energy with them), rather than
becoming trapped in an island. The time-dependent strain protocol �2
from Sec. II was used to adjust the value of the strain. Here, �i ¼ e and
th ¼ 3; 4; 5; 6; 8; and 10, with larger th corresponding to larger e.
Figure 7(a) shows the number of particles hitting the wall Nw, which
proceeds in an approximately stepwise manner. The particles are pref-
erentially lost at one phase in the Kida orbit where the vortex is
stretched nearer to the X-point, causing the stepwise nature of particles
hitting the wall. This results in evaporative damping, while the ampli-
tude of the nonlinear trapping oscillations is reduced. This particle loss
is similar to that observed in Hurst et al.32 The total number of par-
ticles lost is always <4%. The fraction of halo particles is
Nh=Nt ¼ 0:21. The exchange of particles between the core and halo is
small on the time scales studied here.

Figure 7(b) shows the time dependence of the quadrupole
moment as a function of time. The initial decay is exponential with a
rate that matches the free case. The high frequency oscillation of j�Qj is
the result of nutation of the vortex. For strains larger than e ¼ 0:08,
the quadrupole moment does not produce recurrences, but declines
gradually. The presence of strain does not alter the damping and trap-
ping dynamics of the vortex at lower values of strain. However, for
e > 0:08, evaporation leads to the disappearance of the trapping oscil-
lations. This effect is caused by having a separatrix closer to the vortex
than the first resonant layer. Therefore, the vortex-elements at the first
resonance are no longer bound to a close orbit and escape to the wall
(evaporate). A trapping oscillation, which involves these vortex-
elements, can no longer exist.

D. Higher-order resonances

Although the experimental conditions were such that the damp-
ing was unaffected by higher-order critical layers (i.e., harmonics of
the fundamental which appear to be due to the applied strain), numer-
ical simulations have been conducted which are able to study this

FIG. 7. Simulation of the time evolution of an initially flat-top vortex in the region of
strains e ¼ 0:06–0:11 in which vortex elements (fluid particles) cross the separa-
trix. (a) the number of particles hitting the wall Nw is normalized by the total number
of particles Nt. (b) Time dependence of the quadrupole moment normalized by
QðthÞ with the plots shifted vertically for visibility. The initial decay corresponds to
that of the unstrained case [BDL Eq. (9), dash lines]. See text for details.

FIG. 6. (a) The two components of the quadrupole moment oscillating over �50
rotations for e ¼ 0:025; and (b) the relative quadrupole moment from the equilib-
rium compared with numerical simulation data at the same strain rate. The solid
line in (a) connects the data points as a guide for the eye.
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effect. The strain was set at e ¼ 0:03, chosen specifically to visualize
the cat’s eyes (i.e., the island structures or regions of phase space corre-
sponding to particle trapping with a pattern reminiscent of a cat’s eye).
The initial state is prepared by distributing point vortices of equal
strength using the Monte Carlo technique. The simulation data are
taken from time t¼ 168. The initial condition is a flat vortex patch
with a small, linearly decreasing halo. Specifically, dr=rw ¼ 0:25 and
x0ðrÞ ¼ 0:4x0=rw, where dr is the radius difference between the halo
and the core. For monotonically decreasing radial profiles, the higher-
order resonances occur at larger radii. Thus, while the halo slope is
chosen to be similar to Fig. 2(b), the halo extends further in radius in
order to include the locations of higher-order resonances.

An applied strain introduces higher-order resonances (n> 2)
that occur when the action of the particles meets the condition speci-
fied in Eq. (19) for n an even integer. For a given strain e, there is a
critical action Ic;n, such that particles resonate with the perturbation
mode n, generated by wave mode m. Because Xr is strictly decreasing
with the value of the action, higher-order resonances occur at larger
values of the action, i.e., Ic;2 < Ic;4 < Ic;6 <;…;.

To see this effect in the simulations for the n¼ 4 resonance, the
halo surrounding the vortex patch is extended to cover the location for
n¼ 4 specified by Eq. (19). The n¼ 2 and n¼ 4 resonances corre-
spond to two and four cat’s eyes, respectively. The islands in the parti-
cle phase space corresponding to these resonances are investigated in
Fig. 8. Figure 8(a) shows a snapshot of halo vortex elements colored by
their initial radial positions in spatial coordinates (x, y). Figure 8(b)
shows a conversion from the spatial coordinates in Fig. 8(a) into the
action-angle coordinates described in Sec. II, i.e., ðx; yÞ ! ðI;uÞ. The
data are first conformally mapped into a complex stream function,
using Eq. (20), and then mapped into the action-angle coordinates.
The mapping between the complex stream function and the action-
angle coordinate is found from a numerical analysis of the halo in
equilibrium. The cat’s eyes features of the n¼ 2 and n¼ 4 resonances
are shown in Fig. 8(b).

To analyze these features quantitatively, the total number of vor-
tex elements in a range of action, N �

Ð
dIxðI;uÞ, is plotted in Fig.

8(c) in two regions: I=I0 2 ½1:9; 2:1� (blue) and I=I0 2 ½3:9; 4:3�
(orange). A peak in u represents a dense region of vortex elements.
The number of peaks indicates the order n of the resonance. The n¼ 2
cat’s eye [blue curve in Fig. 8(c)] is similar to that of an unstrained vor-
tex. The n¼ 4 cat’s eye (orange curve) is also resolved. The width of
the n¼ 2 and n¼ 4 resonant layers are different in action space due to
different wave amplitudes excited by the initial perturbation. The rela-
tive size of these resonances would be an interesting topic for further
study. Although higher-order resonances might be present in the
experiments, they do not appear to influence the typical evolution of
the quasi-flat vortex. In particular, the damping rate and trapping
oscillations correspond closely to those observed in the strain-free
case.

VI. SUMMARY AND CONCLUDING REMARKS

The inviscid damping of quadrupole perturbations on a quasi-
flat vortex due to wave-vortex interactions with and without an exter-
nally imposed strain flow was investigated in the experiment and using
numerical simulations. The experiments are done using strongly mag-
netized plasmas in a Penning–Malmberg trap, which exhibits the
behavior of a 2D ideal fluid. The trap was designed specifically to be

able to impose 2D external E� B flows on the plasma. The vortex
core density and the extent of the surrounding halo vorticity were
adjusted by varying the plasma compression using the rotating wall
technique and the electron fill time, respectively.

FIG. 8. (a) Numerical simulations of the halo of a strained vortex with the vorticity ele-
ments colored by their initial radial positions. for e ¼ 0:03 and t¼ 168. The halo
extends to reach the separatrix. (b) The particle locations in (a) are converted to
action-angle variables, ðI;uÞ-coordinates; and (c) the integrated number of particles in
(b) are shown in two regions: I=I0 2 ½1:9; 2:1� (blue) and I=I0 2 ½3:9; 4:3� (orange).
In (c), the number of peaks corresponds to n (i.e., blue, n¼ 2; and orange, n¼ 4).
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The inviscid damping of quadrupole perturbations on an
unstrained vortex was studied as a function of the halo vorticity
profile. The damping rate was varied by controlling the radial pro-
file of the halo vorticity. These data were compared with two theo-
retical descriptions, one assuming an idealized vortex patch with a
small halo and the second an eigenfunction description of a
smooth vortex with a monotonically decreasing halo as a function
of radius. These two descriptions show good agreement with the
observed damping rates for small halo amplitudes. The predictions
diverge from the observations when the halo is large and a
Lorentzian function is no longer a good approximation for the
excitability spectrum. The eigenfunction description is more gen-
eral; and thus, unsurprisingly, it agrees better with the observations
than the simpler vortex-patch model.

A constant strain was then applied to a quasi-flat vortex with
a small halo close to the vortex, and the dynamics of the vortex was
studied close to the strained elliptical equilibrium. The initial
amplitude of the quadrupole perturbation was created by linearly
ramping the strain to a hold value. It was found that, when the
holding strain value was varied, the damping rate remained
unchanged, while the wave frequency was modified due to the shift
of equilibrium. In the phase space of action-angle coordinates, the
lowest order resonance exhibits the same dynamics with and with-
out applied strain. The damping rate is strongly dependent upon
the slope of the halo as a function of radius. When the strain is
applied, the equilibrium for the vortex changes. However, the vor-
ticity distribution as a function of the vortex element’s action is
conserved due to adiabaticity. Therefore, the damping rate is also
preserved even with the applied strain.

In this work, both the elliptical perturbation and the applied
strain [Eq. (3)] had the same mode number (m¼ 2). If the applied
strain and perturbation were to have different mode numbers, the
effect on the damping rate could be stronger.

Two additional damping mechanisms were explored, namely,
the evaporation of vorticity across the separatrix and higher-order
resonances due to vorticity at large values of the action. Trapping
oscillations are observed in the experiments, which cause evapora-
tion, and higher-order resonances are observed in numerical
simulations. Both mechanisms do not change the evolution of a
quasi-flat vortex in the linear decay phase. In addition, evaporation
eliminates the trapping oscillations at larger values of the strain.
Future work needs to be done to clarify their roles for smoother
vortices. Furthermore, the azimuthal variation here can be com-
pared to the axial variation in the original 1D electrostatic Landau
problem. With a proper modified electric field, a phenomenon like
damping rate invariance and higher-order resonances should also
be present. In the 1D electrostatic Landau problem, higher-order
resonances matter more because they go lower into the velocity
distribution allowing for more interaction. In contrast, our prob-
lem involves the higher-order resonances going out to larger radii
where there are fewer particles.

These results indicate that the inviscid vortex damping mech-
anism described in Refs. 15, 16, and 18 applies more generally to
vortices that are not isolated but rather influenced by external
flows. This situation is known to occur in a broad range of physical
systems including sheared E� B eddies in the edges of tokamak
plasmas, vortices subject to Keplerian shear in astrophysical

disks, perturbed geophysical polar vortices, and the more general
case of eddies in turbulent flows. Due to the ubiquitous observa-
tion of such damping in the 8ST,32,34 this collisionless damping
mechanism is expected to be important in a wide variety of rota-
tional flows in fluids and plasmas.

ACKNOWLEDGMENTS

This work is supported by the U.S. Department of Energy,
Grant Nos. DE-SC0016532, DE-SC0018236, and NSF Grant No.
PHY 2106332.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1L. Polvani, J. Wisdom, E. DeJong, and A. Ingersoll, Science 249, 1393 (1990).
2D. G. Dritschel and B. Legras, Phys. Today 46(3), 44 (1993).
3A. Simon, M. Wong, and A. Hsu, Geophys. Res. Lett. 46, 3108, https://doi.org/
10.1029/2019GL081961 (2019).

4M. Mester and J. Esler, J. Atmos. Sci. 77, 1167 (2020).
5P. Godon and M. Livio, Astrophys. J. 523, 350 (1999).
6R. Lovelace, H. Li, S. Colgate, and A. Nelson, Astrophys. J. 513, 805 (1999).
7P. J. Armitage and W. Kley, From Protoplanetary Disks to Planet Formation
(Springer, 2019).

8P. Terry, Rev. Mod. Phys. 72, 109 (2000).
9P. Manz, M. Ramisch, and U. Stroth, Phys. Rev. Lett. 103, 165004 (2009).

10S. Kida, J. Phys. Soc. Jpn. 50, 3517 (1981).
11R. Trieling, M. Beckers, and G. Van Heijst, J. Fluid Mech. 345, 165 (1997).
12B. Legras and D. G. Dritschel, Phys. Fluids A 3, 845 (1991).
13D. G. Dritschel and B. Legras, Phys. Fluids A 3, 855 (1991).
14D. W. Moore and P. G. Saffman, Proc. R. Soc. London, Ser. A 346, 413
(1975).

15R. Briggs, J. Daugherty, and R. Levy, Phys. Fluids 13, 421 (1970).
16D. Schecter, D. Dubin, A. Cass, C. Driscoll, I. Lansky, and T. O’Neil, Phys.
Fluids 12, 2397 (2000).

17S. L. Dizes, J. Fluid Mech. 406, 175 (2000).
18N. Balmforth, S. G. L. Smith, and W. Young, J. Fluid Mech. 426, 95 (2001).
19C. Driscoll and K. Fine, Phys. Fluids B 2, 1359 (1990).
20F. F. Chen, Introduction to Plasma Physics (Springer Science & Business
Media, 2012).

21W. M. Orr, Proc. R. Ir. Acad., Sect. A 27, 69–138 (1907). https://www.jstor.org/
stable/20490591.

22S. Brown and K. Stewartson, J. Fluid Mech. 100, 811 (1980).
23A. P. Bassom and A. D. Gilbert, J. Fluid Mech. 371, 109 (1998).
24N. S. Pillai and R. W. Gould, Phys. Rev. Lett. 73, 2849 (1994).
25J. F. Lingevitch and A. J. Bernoff, Phys. Fluids 7, 1015 (1995).
26A. Ashourvan and D. H. Dubin, Phys. Plasmas 21, 052109 (2014).
27F. Anderegg, M. Affolter, A. Kabantsev, D. Dubin, A. Ashourvan, and C.
Driscoll, Phys. Plasmas 23, 055706 (2016).

28P. J. Morrison, Rev. Mod. Phys. 70, 467 (1998).
29R. Chu, J. Wurtele, J. Notte, A. Peurrung, and J. Fajans, Phys. Fluids B 5, 2378 (1993).
30N. Hurst, J. Danielson, D. Dubin, and C. Surko, Phys. Rev. Lett. 117, 235001
(2016).

31N. Hurst, J. Danielson, and C. Surko, AIP Conf. Proc. 1928, 020007 (2018).
32N. Hurst, J. Danielson, D. Dubin, and C. Surko, J. Fluid Mech. 848, 256
(2018).

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 29, 052107 (2022); doi: 10.1063/5.0086227 29, 052107-10

Published under an exclusive license by AIP Publishing

https://doi.org/10.1126/science.249.4975.1393
https://doi.org/10.1063/1.881375
https://doi.org/10.1029/2019GL081961
https://doi.org/10.1175/JAS-D-19-0232.1
https://doi.org/10.1086/307720
https://doi.org/10.1086/306900
https://doi.org/10.1103/RevModPhys.72.109
https://doi.org/10.1103/PhysRevLett.103.165004
https://doi.org/10.1143/JPSJ.50.3517
https://doi.org/10.1017/S0022112097006356
https://doi.org/10.1063/1.858015
https://doi.org/10.1063/1.858016
https://doi.org/10.1098/rspa.1975.0183
https://doi.org/10.1063/1.1692936
https://doi.org/10.1063/1.1289505
https://doi.org/10.1063/1.1289505
https://doi.org/10.1017/S0022112099007326
https://doi.org/10.1017/S0022112000002159
https://doi.org/10.1063/1.859556
https://www.jstor.org/stable/20490591
https://www.jstor.org/stable/20490591
https://doi.org/10.1017/S0022112080001425
https://doi.org/10.1017/S0022112098001955
https://doi.org/10.1103/PhysRevLett.73.2849
https://doi.org/10.1063/1.868613
https://doi.org/10.1063/1.4878319
https://doi.org/10.1063/1.4946021
https://doi.org/10.1103/RevModPhys.70.467
https://doi.org/10.1063/1.860721
https://doi.org/10.1103/PhysRevLett.117.235001
https://doi.org/10.1063/1.5021572
https://doi.org/10.1017/jfm.2018.311
https://scitation.org/journal/php


33N. Hurst, J. Danielson, D. Dubin, and C. Surko, Phys. Plasmas 27, 042101
(2020).

34N. Hurst, J. Danielson, D. Dubin, and C. Surko, Phys. Rev. Fluids 6, 054703 (2021).
35D. A. Schecter, On the Dynamics of Inviscid Relaxation in 2D Fluids and
Nonneutral Plasmas (University of California, San Diego, 1999).

36B. V. Chirikov, Phys. Rep. 52, 263 (1979).
37A. Rechester and M. Rosenbluth, Phys. Rev. Lett. 40, 38 (1978).
38J. Wisdom, Astron. J. 85, 1122 (1980).
39J. Danielson, T. Weber, and C. Surko, Phys. Plasmas 13, 123502 (2006).
40A. Leonard, J. Comput. Phys. 37, 289 (1980).

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 29, 052107 (2022); doi: 10.1063/5.0086227 29, 052107-11

Published under an exclusive license by AIP Publishing

https://doi.org/10.1063/1.5138924
https://doi.org/10.1103/PhysRevFluids.6.054703
https://doi.org/10.1016/0370-1573(79)90023-1
https://doi.org/10.1103/PhysRevLett.40.38
https://doi.org/10.1086/112778
https://doi.org/10.1063/1.2390690
https://doi.org/10.1016/0021-9991(80)90040-6
https://scitation.org/journal/php

	s1
	d1
	d2
	s2
	d3
	d4
	d5
	d6
	d7
	d8
	d9
	d10
	d11
	d12
	f1
	d13
	d14
	d15
	d16
	d17
	d18
	d19
	d20
	d21
	s3
	s4
	f2
	s5
	s5A
	f3
	s5B
	s5C
	f5
	f4
	s5D
	f7
	f6
	s6
	f8
	l
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40



