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Abstract. Elaborate wavefunctions representing low-energy positron–helium elastic scattering,
which were obtained in the course of calculating accurate values of the scattering phase shifts, are
used to determine the electron–positron annihilation rate and the Doppler-broadened annihilation
γ -ray spectrum. This spectrum is also measured using room-temperature positrons in a Penning
trap and a non-Gaussian lineshape is observed for the first time. Excellent agreement is obtained
between the theoretical spectrum and the present results.

An important and interesting feature of low-energy positron collisions with atoms and
molecules is the possibility of annihilation of the positron with one of the electrons in
the target. This has been the subject of extensive experimental (Iwataet al 1995, Heyland
et al 1982, Colemanet al 1994) and theoretical (Drachman 1969, Humberston and Wallace
1972, McEachranet al 1977, Campeanu and Humberston 1977, Armouret al 1990) studies.
Recent improvements in the scattering calculations (Van Reeth and Humberston 1995) and
in the measurements obtained using positrons stored in a Penning trap, now enable us to
make detailed comparisons between theoretical predictions and experimental measurements
of positron annihilation in helium, the results of which are presented in this letter.

Experimentally, previous measurements in helium were performed in dense gases
(Colemanet al 1975, 1994). Our measurements were performed in a Penning trap, where
large numbers of positrons can be stored with well characterized energies. The system is
ideal for studies of two-body interactions between a positron and an atom since it is operated
at a low test gas pressure.

Annihilation into two γ -rays is far more probable than into threeγ -rays. Assuming
that the positrons are unpolarized, the annihilation rate in a gas is (Humberston 1979)

λ = πr2
0cnZeff (1)

wherer0 = e2/(mc2) is the classical radius of the electron,c the speed of light,n the number
density of atoms andZeff the effective number of electrons in the target system. The value
of Zeff, which varies with the speed of the positron, is a measure of the probability of the
positron being at the same position as one of the target electrons and is calculated from the
elastic scattering wavefunction for the positron–target system as follows:

Zeff = N

∫
|9(r1 = r2, r2, r3, . . . , rN+1)|2 dr2 dr3 . . . drN+1 (2)
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wherer1 is the coordinate of the positron,r2, r3, . . . , rN+1 are the coordinates of theN
electrons in the target and9 is the wavefunction, normalized to unit positron density at
infinity. The error inZeff is only of first order in the error in9, whereas the error in
the elastic scattering phase shifts is usually of second order in the error. Consequently, a
calculated value ofZeff is likely to be significantly less accurate than the phase shift and
good agreement between the calculated value ofZeff and an accurate experimental value,
derived from measurements of the annihilation rate, is therefore an important test of the
quality of the scattering wavefunction.

We have calculatedZeff for positron–helium scattering, using the elaborate variational
wavefunctions generated by Van Reeth and Humberston (1995) (see also Humberston and
Van Reeth 1996). For s-wave scattering, the wavefunction is

9t = 1√
4π
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whereP23 is the exchange operator for the two electrons,r12 = |r1 − r2| etc and8He(r2, r3)

is a very accurate approximation to the helium wavefunction, of the form

8He(r2, r3) = exp
[−(γ (r2 + r3))

] n∑
j=1

bj (r2 + r3)
Kj (r2 − r3)

Mj r
Nj

23 (4)

with 22 terms included in the summation. The most elaborate of these scattering
wavefunctions, containing as many as 502 short-range correlation terms, give very accurate
and well converged values for the phase shifts.

Positrons which thermalize in the helium gas at a temperatureT before annihilation
have a mean energy of3

2kT , with the value of 0.04 eV atT = 300 K. At such low energies
the dominant contribution toZeff is from s-wave scattering and the only other contribution
of any significance comes from the p-wave. Good polynomial fits to the dependence of
these two partial-wave contributions toZeff on the positron momentum,k, over the range
0 6 k < 0.4 are given by

Zeff(l = 0) = 3.9321+ 0.185 84k − 19.563k2 + 46.670k3 − 38.212k4 (5)

Zeff(l = 1) = 3.8741k2 − 1.6910k3 − 0.641 17k4 (6)

which are plotted, together with the totalZeff, in figure 1. The experimental value ofZeff

is an average over the Maxwell–Boltzmann speed distribution of the positrons and we have
therefore convoluted the total theoreticalZeff with this speed distribution (Bhatiaet al 1977)
to give a value ofZeff = 3.88± 0.01 atT = 293 K. This is in reasonable agreement with
what is probably the most accurate experimental value ofZeff = 3.94± 0.02 (Colemanet
al 1975).

In the frame of reference of the centre of mass of the electron–positron pair, the two
γ -rays produced in the annihilation of the spin singlet state both have the same energy,
E0 = hν0 = mc2 = 511 keV and they emerge in opposite directions; that is, the angle
between them isπ . In the laboratory frame of reference, however, the velocity of the
centre of mass isv and the momentum of the electron–positron pair is thereforep = 2mv.
Consequently the twoγ -rays are Doppler shifted to other energies,E1 = hν1 andE2 = hν2

and the angle between their directions becomes(π−θ), as illustrated in a greatly exaggerated
manner in figure 2. (In realityθ is typically a few milliradians.) Measurements of the
energy shift and the angleθ have both been used previously in experimental investigations
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Figure 1. The theoretical dependence ofZeff on the positron momentum.

of the momentum distribution of the annihilating electron–positron pair (Shizumaet al 1978,
Colemanet al 1994).

In the centre-of-mass frame of reference, the momenta of the two annihilationγ -rays
are both of magnitudeE0/c = mc and their directions may be taken to be along the positive
and negativey-axis. Also, the velocity of the centre of mass in the laboratory frame may
be taken to be in thex–y plane and making an angleα with the positivex-axis, as shown
in figure 2. Under the non-relativistic transformation to the laboratory frame of reference,
the momenta of the twoγ -rays become

p1 = mcĵ + mv and p2 = −mcĵ + mv (7)

whereĵ is a unit vector along they-axis. To first order inv/c,

p1 = mc + mv sinα = mc + 1
2py and p2 = mc − mv sinα = mc − 1

2py (8)

wherepy = 2mv sinα is they-component of the momentum of the electron–positron pair.
The Doppler shift in the energy of one of theγ -rays is therefore

1E1 = (E1 − E0) = c(p1 − mc) = 1
2cpy . (9)

The angle between the twoγ -rays in the laboratory frame of reference is(π − θ) and, from
figure 2,

θ = θ1 + θ2 = mv cosα

mc
+ mv cosα

mc
= px

mc
(10)

wherepx = 2mv cosα is thex-component of the momentum of the electron–positron pair.
In an isotropic system such as this, all directions of the total momentum of an

annihilating electron–positron pair with a given magnitude,p, are equally likely. Therefore,
all components of momentum have the same distribution function, which may be obtained
from either the distribution function for1E, equation (9), or the angular correlation function
for the angle(π−θ) between the twoγ -rays, using equation (10). From these two equations,
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Figure 2. Illustration of the relationships between the momenta of the annihilationγ -rays in
the centre-of-mass coordinate system and in the laboratory system.

the relationship between the value of one component of the centre-of-mass momentum and
1E andθ is

1

2
cpx = 1E = mc2 θ

2
. (11)

The probability of the twoγ -rays emerging with the angle between them in the range
(π − θ) to (π − (θ + dθ)) is F(θ) dθ , whereF(θ) is the angular correlation function. This
is calculated from the elastic scattering wavefunction in the following manner (Humberston
1979):

F(θ) ∝
∫ ∞

−∞

∫ ∞

−∞
0(px = mcθ, py, pz) dpy dpz (12)

where 0(p) is the momentum distribution function of the annihilating electron–positron
pair, which for the positron–helium system has the form

0(p) =
∫

dr3

∣∣∣∣∫ exp(−ip · r2)9(r1 = r2, r2, r3) dr2

∣∣∣∣2

. (13)

Instead of expressing the distribution function in terms ofθ , it can be given as a function
of the γ -ray energyE = m0c

2(1 + 1
2θ) = 511(1 + 1

2θ) keV.
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Our experimental measurements ofγ -ray spectra were performed in a Penning trap
designed to accumulate, store and manipulate large numbers of room-temperature positrons
(Surkoet al 1989, Greaveset al 1994). A schematic diagram of the apparatus is shown in
figure 3. High-energy positrons emitted from a 60 mCi22Na source are slowed in a solid
neon moderator (Mills and Gullikson 1986, Greaves and Surko 1996) to a few eV. They
are then guided through a magnetic beam line into the trap where they experience inelastic
collisions with nitrogen buffer gas molecules. The inelastic collisions result in the positrons
being trapped axially in a potential well imposed by an electrode structure and radially
by a uniform magnetic field of 1 kG and they are cooled to room temperature within the
order of a second. The positron loading rate is 1–2× 106 s−1 and the positron lifetime is
typically 30 s in the presence of the buffer gas. If the buffer gas feed is switched off after
the positrons have been loaded, the positron lifetime is limited by annihilation on impurities
in the vacuum system, but can be as long as 1 hour if the impurities are reduced by filling
the cold trap, shown in figure 3, with liquid nitrogen.

Figure 3. A schematic diagram of the positron trap showing the final two stages.

The γ -ray spectrum was obtained using a similar technique to the previous
measurements by Tanget al (1992), but with various improvements in the experimental
geometry and gas handling system. These improvements have enhanced the signal-to-noise
ratio by about two orders of magnitude over our earlier measurements and the installation
of a high-capacity cryogenic pump has enabled us to obtain annihilation data for helium
for the first time in the trap. A detailed account of the measurements is in preparation
(Iwata et al 1996). The experiment is operated with repetitive cycles of positron filling and
annihilation as follows. Positrons are loaded into the positron trap for 30 s in the presence
of the N2 buffer gas. The buffer gas feed is then switched off, followed by an 8 s pump-out
delay. The intrinsic Ge detector shown in figure 3 is then gated on before the helium gas
is admitted into the system. The spectrum is accumulated for 30 s and the helium gas
feed is then turned off. This cycle is repeated for 2 hours, after which time the cryogenic
pumps become saturated and stop functioning. The observed spectrum, which contains a
total of 9× 104 γ -ray counts in the peak, also contains the detector response, which is
accurately approximated with a combination of a Gaussian with FWHM of 1.16 keV and a
step function convolved with the same Gaussian. (The step function in the detector response
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is due to Compton scattering in the Ge crystal.) The spectrum is plotted in figure 4(a) with
the step function subtracted. A Gaussian function is fitted to the spectrum (the broken
curve in figure 4(a)), resulting in a FWHM of 2.50± 0.03 keV with the detector response
deconvoluted. As indicated by the residuals in figure 4(b), the Gaussian does not give a
very good fit withχ2/(degrees of freedom) = 4.7 instead of approximately unity if the model
of the Gaussian fit were appropriate. A Gaussian form has been assumed in the analysis
of the previous experimental data, but it has no proper theoretical basis. The non-Gaussian
shape of the present experimental spectrum is evident from figure 4(a) and it demonstrates
the high precision of our measurement.

Figure 4. (a) Annihilation γ -ray spectrum for positrons interacting with helium atoms, as
measured in the laboratory frame of reference. Full curve: theoretical prediction convolved
with the response of the Ge detector; broken curve: Gaussian function fitted to the experimental
data; (◦), experimental measurements. (b) Residuals from the Gaussian fit. (c) Residuals from
the theoretical calculation.

Before making a comparison between the theoretical and experimental distribution
function, the theoretical data calculated at a positron energy of 0.04 eV were convoluted with
the energy resolution function of the detector. The results, normalized to the experimental
data, are shown in figure 4(a) as a full curve with the residuals in figure 4(c). We have
chosen to convolute the theoretical data rather than to deconvolute the experimental data
because the latter procedure was found to be numerically unstable and therefore less reliable.
The agreement between the convoluted theory and experiment extends over three orders of
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magnitude without using fitting parameters and we find the value ofχ2/(degrees of freedom)
= 1.2.

Previous measurements of the momentum distribution of the annihilating electron–
positron pair mainly used the angular correlation of annihilation radiation (ACAR) technique
(Stewartet al 1990, Colemanet al 1994). The angular correlation of the twoγ -rays resulting
from annihilation is measured using two narrow slits, but high angular resolution is achieved
at the expense of count rate. In the experiment of Colemanet al (1994), carried out in rare
dense gases, high-energy positrons are emitted directly from a source into the gas cell. This
produced a significantγ -ray component from the annihilation of positronium atoms. Their
FWHM in the angular correlation of the free-positron component of the annihilation radiation
was obtained by fitting two Gaussians to the spectrum, yielding a value of 10.30± 0.05 mrad
(2.63 ± 0.01 keV) for the free positron component. The experiment in liquid helium by
Stewartet al (1990) yielded a linewidth of 9.4 ± 0.5 mrad (2.4 ± 0.1 keV). In neither of
these experiments were the data sufficiently good to resolve the non-Gaussian features of the
lineshape that we have observed here. Shizumaet al (1978) measured theγ -ray spectrum
in noble gases using a Geγ -ray detector and from the data that they presented for helium at
atmospheric pressure, we estimate the FWHM of their annihilation line to be 2.0±0.1 keV.

In summary, we have obtained a new theoretical estimate for the annihilation rate
of positrons in helium gas and find good agreement with previously measured values.
Furthermore, excellent agreement is obtained between our theoretical and experimental
estimates of theγ -ray annihilation spectrum for the helium atom. This agreement provides
evidence of the accuracy of both the positron–helium wavefunction used in these calculations
and the experimental data.
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