
Finite-Length, Large-Amplitude Diocotron Mode Dynamics
N. C. Hurst, J. R. Danielson, C. J. Baker and C. M. Surko

9500 Gilman Drive, Physics Department, University of California, San Diego, La Jolla CA 92093

Abstract. The m = 1 diocotron mode is an important feature of the dynamics of single-component plasmas confined in
Penning-Malmberg traps. Presented here are calculations of the diocotron mode frequency under conditions where the most
commonly used approximations are invalid. One important application of the calculation described here is the operation of
a multi-cell Penning-Malmberg trap that employs a low-aspect-ratio “master" cell. Measurements of the mode frequency in
a prototype device are presented. The predictions of the calculation are in good agreement with the data, even for mode
amplitudes approaching the inner radius of the electrodes.
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INTRODUCTION

Single-component plasmas (SCP) confined in Penning-Malmberg traps have been, and continue to be, the subject of
extensive study, driven in large part by a wide range of applications [1]. These SCPs are useful in many research
areas including particle, atomic, plasma, and condensed matter physics; fluid dynamics, and material science. Single-
component plasmas are used to trap and cool antiparticles [2], and to subsequently generate antiparticle beams
[3, 4, 5, 6]. Such beams are used in a variety of applications including studies of binding and annihilation of positrons
with molecules [7], scattering experiments [8], the production of antihydrogen [9], the creation of electron-positron
plasmas [10], efforts to create positronium Bose-Einstein condensates [11], and the study of materials [12, 13].
Additionally, SCPs exhibit many interesting phenomena from the perspective of basic plasma science, including the
relaxation to thermal equilibria [14] and the ability to achieve infinite plasma confinement times [15].

Some of these applications either require, or benefit from, the availability of large numbers of trapped antiparticles.
To this end, research is being conducted with the goal of building a high-capacity positron trap. Progress in this effort
has necessitated the design and construction of a novel type of particle trap - a high magnetic field multi-cell Penning-
Malmberg (PM) trap, in which separate SCPs are stored in parallel in a bank of compact traps that share a common
vacuum and superconducting magnet system [16].

Experiments addressing the basic plasma physics of multi-cell trap (MCT) operation have resulted in a number of
interesting discoveries. When a magnetized SCP is displaced from the axis of symmetry in a PM trap, the plasma
executes a circular orbit about the trap axis (the so-called "diocotron mode") which is due to the E×B motion of
the plasma arising from the image-charge electric fields. It was found that, when a SCP simultaneously spans both a
large-diameter master cell and an off-axis storage cell in a MCT, it executes non-circular diocotron-like orbits about a
stationary point, with the motion characterized by the competition of the bounce-averaged diocotron drifts in the two
cells [17]. It was also observed that, during autoresonant excitation of the diocotron mode [18] to high amplitude, the
plasma can eventually lose phase lock and sometimes suffer partial or total destruction (i.e. particle loss to the wall)
[19].

Plasmas have now been trapped in the off-axis storage cells of a MCT. Details of this and other related phenomena,
such as high-space-charge plasma confinement and inter-cell plasma transfer dynamics, will be covered in a future
publication [20]. Quantitative understanding of the diocotron mode frequency has proven to be essential to the
development of a predictive model of the plasma dynamics in the low-aspect-ratio master cell. Improved calculations
are presented here for the mode frequency as a function of plasma displacement D and total particle number N for a
wide range of both parameters, under only one assumption, namely that the plasma radius is much smaller than the
wall radius.
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FIGURE 1. Arrangement of multi-cell test structure (MCTS).

DESCRIPTION OF THE EXPERIMENTS

The apparatus used for these experiments is a prototype of a multi-cell Penning-Malmberg trap, dubbed the Multi-Cell
Test Structure (MCTS) that has been in operation recently at U. C. San Diego. The goal is to design traps to store ever
larger numbers of positrons. A principle impediment to this is that the plasma space charge potential Φp developed
at large N/Lp, where N is the total particle number and Lp is the plasma length, can become too large for practical
axial confinement potentials Φc. The MCT employs multiple storage cells in parallel, using metal electrodes to shield
separate plasmas from each other. Since plasma potential Φp ∝ N/Lp, arranging x plasmas in parallel reduces the
required potential Φc by a factor of x for a given N.

The MCTS is illustrated in Fig. 1. It consists of three axial sections: a large-diameter “master" cell, a bank of 4
smaller storage cells, and a phosphor screen assembly for imaging the plasmas, all of which are immersed in a 4.8
T magnetic field. The master cell has a wall radius Rw = 3.8 cm and a trap length Lt = 15.5 cm. Of the four storage
cells, one shares a common axis with the master cell and has Rw = 0.8 cm, while the other three are located 3 cm
off of the axis of symmetery and have wall radii 0.8, 0.6, 0.4 cm. All storage cells have trap lengths of 15 cm. All
cells, including the master, have one electrode spanning a fraction of the trap length which is divided into four equal
90◦ segments that can be independently biased. These segmented electrodes are used for so-called rotating wall (RW)
plasma compression, autoresonant diocotron-mode amplitude control, and as a plasma diagnostic.

Experiments in the MCTS, thus far, operate with electron plasmas for increased data rate. The master cell is filled
on axis with electrons using a heated-cathode electron gun located in a region of lower field. It generates ∼ 100 nA in
circular area corresponding to about 0.25 mm in radius in the 4.8 T field. Filling off-axis storage cells is accomplished
by first transporting the plasma across the magnetic field using autoresonant diocotron excitation, and then transferring
plasma axially into a storage cell. The plasma is diagnosed by grounding one of the confinement electrodes and
accelerating electrons through + 5 kV to then allow them to impinge on the phosphor screen. The resulting light is
imaged with the CCD camera with a resolution of about (55 µm)2 / pixel and a noise floor of roughly 3000 e− / pixel.
Note that plasmas trapped in the master cell can only be imaged by passing through the storage cells, thus restricting
the range of plasma displacements D that can be imaged. An additional diagnostic tool is the pick up signal on one of
the 90◦ sectors of the segmented electrodes.

Typical characteristics of the plasmas in the master (storage) cell are as follows: The total electron number N can
vary up to roughly 109, limited by the space charge potential Φp, which ranges up to 80 (95) V. Plasma lengths are
Lp ≤ 20 (≤ 17) cm, densities are typically n ∼ 1− 2× 108 cm3, RMS plasma radii occupy the range 0.25− 2 mm,
and plasma temperatures are T ∼ 0.1 eV. The m = 1 diocotron mode frequency ranges up to 1 (5) kHz, typical E×B
rotation frequencies are 30-60 kHz, and axial bounce frequencies are 1 - 10 MHz.
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THE DIOCOTRON MODE FOR SINGLE-COMPONENT PLASMAS IN
PENNING-MALMBERG TRAPS

The diocotron mode in a PM trap is the E×B drift orbit of the plasma due to the electric field from the image charge
induced at the surfaces of the confining electrodes. It has been studied extensively for the case of pure electron plasmas.
Focus here is restricted to the case of azimuthal wavenumber m = 1. For axial particle bounce times much smaller than
the perpendicular drift timescale, this mode represents a circular trajectory of a rigid-rod plasma in the (r,θ) plane
about the symmetry axis. Note that the electron plasma column also experiences an E×B rigid rotation about its axis
due to the self field. However, for the conditions studied here, the timescale for this motion is fast compared to, and has
no significant effect on, the diocotron drift motion. Predictions for the diocotron mode frequency have been obtained
under a variety of assumptions, many of which are invalid in the MCTS due to design constraints on trap architecture
in the context of the goal of developing a high-capacity trap. Presented here is a brief overview of previous work on the
subject, followed by description of a new model and experimental tests of diocotron mode frequencies in the MCTS
master cell.

The most basic analysis of the diocotron mode in a PM trap involves considering a line of charge, infinite in axial
extent and infinitesimal in radial extent [21]. The motion is in two dimensions (r,θ) and Rp → 0 where Rp is radius
of the plasma column. The E×B drift velocity is calculated from the electric field from the image line charge located
at ri = R2

w/D, where D, the amplitude of the mode, is the displacement of the plasma from the axis of symmetry. The
linearized infinite-length diocotron frequency for D/Rw ≪ 1 and the full nonlinear formula are given (respectively) by

f1 =
cNe

πLpBR2
w
, (1)

and

f∞ = f1

[
1

1− (D/Rw)2

]
. (2)

The next level of analysis involves consideration of the finite radius of the plasma column. Physically, the normally
circular areal density profile of the plasma ⟨n⟩z(r,θ) ≡ (1/Lp)

∫
dz n(r,θ ,z) becomes distorted as it approaches the

wall (i.e. as D/Rw → 1). This problem has been solved to order (D/Rw)
2 by considering the quadrupole perturbation

of the plasma profile [22]. The resulting formula for the diocotron drift frequency fq, now valid for finite plasma radius
Rp, is

fq = f1

[
1+

1−2(Rp/Rw)
2

[1− (Rp/Rw)2]2

( D
Rw

)2
]
. (3)

The previous analysis assumes a uniform elliptic patch of constant areal electron density. Another analysis considers
more general plasma profiles [23], the result being a fairly complicated expression that is not particularly relevant here.

Finally, one may call into question the assumption that the plasma is infinite in axial extent. In this case, two factors
contribute to the diocotron frequency shift: the finite extent of the image charge, and the force on the plasma ends due to
the electric fields from the axial confinement potentials of the PM trap. The former contribution fi, due to finite length
of the image charge, must be considered when the assumption Rw/Lp ≪ 1 breaks down. The latter contribution fc, due
to axial confinement fields, must be considered when the assumption |Φp|/|Vc| ≪ 1 is invalid. The latter contribution
to the frequency is related to the “magnetron" drift effect experienced by single particles in a PM trap.

These finite length effects can be thought of as corrections, or “shifts" to the infinite length formula. The image
field contribution is reduced by some amount ∆ fi < 0, and the confinement field produces a contribution fc > 0. This
problem has been solved to lowest order in D/Rw, Rp/Rw, Rw/Lp, and |Φp|/|Vc| by Fine & Driscoll [24], a calculation
referred to here as “FD98". The diocotron frequency shifts calculated in FD98 are

∆ fi =−0.671 f1

(Rw

Lp

)
(4)

fc = f1
j01

2

(1
4
+ log

Rw

Rp
+

T Lp

Ne2

)(Rw

Lp

)
(5)

where j01 = 2.405 is the first zero of the J0 Bessel function.
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The multi-cell trap application discussed here imposes specific constraints on what assumptions can be made in the
construction of a model for the diocotron frequency. An expansion in D/Rw will not work. The model must be valid
for the full range 0 ≤ D/Rw < 1, since the plasma reaches D/Rw = 0.8 for the off-axis transfers into the storage cells
of the MCTS. Due to the small aspect ratio of the master cell, it is also not appropriate to make the approximation
Rw/Lp ≪ 1. Finally, in order to maximize N, the trap must be operated in a high-space-charge regime, where the
plasma potential is on the order of axial containment potential, |Φp| ∼ |Vc|, a regime that has not previously been
studied to any great extent.

The effect of plasma temperature can be neglected, except for small N, ≤ 107 e−, on the grounds that Φp/T ≫ 1
due to strong cyclotron cooling. The effect of finite plasma radius can also be neglected based on the fact that typically
Rp/Rw < 0.1. Further, even at D/Rw = 0.8 the plasma profiles appear circular, indicating that quadrupole perturbations
are unimportant in calculating the image-charge electric fields. As described below, the two frequency contributions
are calculated separately, and then their sum fd = fc + fi is compared with experimental data and the predictions of
FD98.

THE CONFINEMENT FIELD CORRECTION

Laplace’s equation is solved for the azimuthally symmetric vacuum confinement potential Φc on the domain 0 ≤ z ≤
z∞, 0 ≤ r ≤ Rw. Here, the end of the cylinder at z∞ extends past the physical trap region in order to model finite-length
confinement electrodes. The faces of the cylinder are chosen to be at ground, and the wall of the cylinder is split into
five regions, labeled in Fig. 2, where the potential is specified piece-wise. Region I is grounded, corresponding to the
central PM trap electrode, region III is held at potential −Vc, corresponding to the PM trap confinement electrode, and
region V is grounded (and extends to z∞). Regions II & IV represent small gaps where the potential increases/decreases
linearly between −VC and ground so as to avoid unphysical infinite electric fields. The value of z∞ can be chosen almost
arbitrarily with little effect on the calculation. The Laplace solution is

Φc(r,z) =
∞

∑
n=1

A0nI0
(
πnr/z∞

)
sin
(
πnz/z∞

)
, (6)

where

A0n =
(

πz∞I0
(
πnRw/z∞

))−1
2π
∫

dzsin
(
πnz/z∞

)
Φ(r = Rw,z), (7)

I0 is the modified Bessel function of the first kind, and Φ(r = Rw,z) is the specified potential on the wall of the PM
trap.

The confinement electric field has both r̂ and ẑ components. Ecz = −∂zΦc provides axial confinement, while
the non-zero value of Ecr = −∂rΦc gives rise to an E× B drift of the plasma in the azimuthal direction. It adds
to the zeroth-order diocotron motion, thus producing a frequency shift. Since Ecr varies with z, the forces on the
plasma particles vary during the axial bounce motion. In the experiments described here, the axial bounce time is
much smaller than the diocotron-drift timescale. Thus this force is bounce-averaged and multiplied by the particle
number N to get the total force on the plasma. This is equivalent to calculating the instantaneous force on the
entire plasma, since n(z) is assumed constant (which is equivalent to the statement that Debye length is small
compared to Lp). Due to the fact that Rp/Rw ≪ 1, the electric potential is approximately constant across the profile:
|Φp(ρ = 0)−Φp(ρ = Rp)| ≪ |Φp(ρ = 0)| ≡ Φp, where ρ is the radial coordinate centered on the centroid of plasma
density.

Under these assumptions, the plasma potential at a given displacement is

Φp(D,z = 0) = λ

[
1+2ln

(
1

Rp

√
(D+Rp)2D2

R2
w

+R2
w −2D(D+Rp)

)]
, (8)

where λ ≡ −eN/LP is the charge per unit length of the plasma column. In the limit D/Rw → 0, this expression
reproduces the familiar one, ΦP = λ (1+ ln(Rw/Rp)). Although Eq. 8 presumes a “point" plasma, the plasma radius
Rp does enter the expression. Consistent with the experiments described here, Rp is chosen to be 0.5 cm. The results
are weakly dependent on this parameter, since it appears only in the logarithm. The resulting radial electric force on
the plasma is then given by
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FIGURE 2. Confinement potential contours for the master cell (a) and storage cell (b), for the confinement electrodes biased to
-100 V. Assuming reflection symmetry about z = 0, only half the PM trap is shown. Also shown are the lengths of plasmas with
different N at three different displacements: N = 2×108 (—), 9×108 (- - -), 16×108 (−·−·).

Fcr = 2λ
∫ Lp/2

0
dz Ecr =−2λ

∞

∑
n=1

A0n

[
cos
(
πn(Lp/2)/z∞

)
−1
]
I1
(
πnD/z∞

)
. (9)

Determination of Lp in this expression amounts to equating half of the plasma potential, Φp/2 to the confinement
potential (given in Eq. 6), which gives the classical turning point

|Φp/2−Φc(r = D,z = Lp/2)|= 0. (10)

The factor of 1/2 is a result of the condition that the equilibrium plasma maintains an axial equipotential. This requires
that the potential at the turning point be equal to the vacuum potential at that point, and that the sum of the two equal
the plasma potential at z = 0 (i.e., where it is assumed that the vacuum potential is zero). This transcendental equation
for Lp is solved numerically, returning a unique value of Lp for a given particle number N and displacement D/Rw for
the specified trap geometry and confinement voltage. Fig. 2 shows the results of this solution, both in the master and
storage cell, for different N and D/Rw . Note that for higher N, the space charge pushes the plasma into the confinement
electrode (region III), and dLp/dD switches sign from + to - as Φp crosses Vc/2. In the high-aspect-ratio storage cell,
the length change with D is less drastic, and the plasma potential for a given N is reduced by the logarithmic term.
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FIGURE 3. Plasma length Lp in the master cell as a function of both total particle number N and displacement D/Rw, as
calculated by solving Eq. 10. Arrows indicate sign change of dLp/dD.

Figure 3 shows plasma length in the master cell as a function of N and D/Rw, calculated from Eq. 10. The sign change
of dLp/dD is evident at N ∼ 9×108 e−.

Given Lp, the confinement-field diocotron mode frequency shift fc follows directly from Eq. 9. Here, the plasma
length is the only parameter lacking for a fully analytic formula for the confinement field frequency shift. Once the
radial electric force on the plasma is calculated, fc follows from the E×B drift velocity, thus

fc =− cFcr

2πeNBD
. (11)

SHIFT DUE TO FINITE-LENGTH OF THE IMAGE CHARGE

The approach used here is to follow the calculation of FD98, but without making assumptions as to the magnitude
of D/RW , Lp/Rw, or |Φp|/|Vc|. These approximations allowed FD98 to arrive at an analytical expression for the shift
∆ fi; relaxing them means that one must resort to a numerical solution. The calculation involves expressing the electric
potential inside the trap due to the finite image charge as an integral over the appropriate Green’s function. As before,
the drift of the plasma column may be thought of as either the force on a single particle in a bounce-averaged potential
or on the entire line-charge at one instant in time. Adopting the former picture, the bounce-averaged electric field is
given by

⟨E⟩b =
1

Lp

∫ Lp/2

−Lp/2
dz(−∂rϕi|r=D), (12)

where the potential due to the finite-length image charge is

ϕi(r,θ ,z) =
∫ Lp/2

−Lp/2
dz′
∫

dr′
∫

r′dθλδ (θ ′)
δ (r′−D)

D
Gi(r,r′), (13)
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and the Green’s function for the image charge is

Gi(r,r′) =− 4
π

∫ ∞

0
dk cos(k(z− z′))

[1
2

K0(kRw)

I0(kRw)
I0(kr<)I0(kr>)

+
∞

∑
m=1

Km(kRw)

Im(kRw)
Im(kr<)Im(kr>)cos(m(θ −θ ′))

]
.

(14)

The resulting expression for ⟨E⟩b is an integral over k which is a function of (Lp/Rw) and (D/Rw), and must be
evaluated numerically, using Eq. 10 for the plasma length. This calculation is then inserted into the E×B drift formula
to give the image-field portion of the m = 1 diocotron frequency,

fi =
c

2πDB
⟨E⟩b. (15)

The frequency shift ∆ fi is found by subtracting the infinite length formula Eq. 2 from Eq. 15.

COMPARISON OF THE MODEL AND EXPERIMENT

Comparison of the experimental data with the model predictions for the diocotron frequency as a function of total
particle number N is shown in Fig. 4 for plasmas near the axis of the trap (note that space charge potential increases
with N). Also shown are the separate contributions to the model predictions from the confinement and image fields,
Eqs. 11 and 15 respectively, and the predictions of the FD98 model. The image contribution from FD98 is identical
to that of the present work because the D/Rw ≪ 1 criterion is satisfied; however FD98 overpredicts fc for higher N
because that calculation uses a confinement potential that increases exponentially away from z= 0 with the assumption
|Φp| ≪ |Vc|. A similar comparison was carried out for the high-aspect-ratio storage cell; and as expected, the present
model agrees well with experimental data and converges to the FD98 result (for smaller values of N).

FIGURE 4. Diocotron frequency fd as a function of total particle number N for plasmas near the axis in the master cell. Data
(black triangles) are compared with the FD98 model (- - -) and the present work (—). The separate contributions from confinement
fields fc (—) and from image fields fi (—) are also shown, with the black lines showing the sum fd ≡ fc + fi.
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FIGURE 5. The diocotron frequency fd in the master cell is shown as a function of the displacement D/RW for three values of
N. Green shaded regions represent predictions of the present model including variations of the N values for the data. Solid black
lines are predictions of the model, with N chosen to fit the on-axis linear frequency. Dashed lines show the predictions of Eq. 2,
normalized to fit the on-axis linear frequency.

Fig. 5 shows diocotron frequency data as a function of D/Rw for three different total particle numbers, N ≈ 0.8,
2.4, 4.7 ×108 e−, and compares them with the present model as well as that of Eq. 2. The model and data are in good
agreement, while the infinite-length formula fails at large D/Rw. The drift due to the confinement field drops as the
plasma moves radially outward, because the vacuum electric field has a smaller radial component near the wall. In
addition, N/Lp decreases as the plasma lengthens at high D/RW (i.e., for Φp <Vc/2, which is the case for these data).
Both of these effects reduce the diocotron frequency relative to the prediction of Eq. 2.

SUMMARY

A detailed understanding of diocotron mode dynamics is necessary in some applications such as the successful
operation of a multi-cell trap. Previous calculations of the diocotron mode frequency fail to reproduce the behavior
observed in a realistic MCT architecture due to the nature of the approximations made. The calculations of finite-length
effects presented here show much improved agreement with experimental data from a prototype MCT, to the extent
that this approach will be of considerable value in developing practical MCT systems. More generally, the approach
described here can be expected to be useful for any low-aspect ratio PM operating with either high space charge or a
large amplitude m = 1 diocotron mode. For example, applications with spatial constraints may benefit from short, low
aspect ratio traps, in which case the model presented here would be appropriate.
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