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Abstract. An experimental technique is presented for studying two-dimensional (2D) ideal fluid vortices in the
presence of externally imposed flows, using an electron plasma confined in a Penning-Malmberg trap. This procedure
is made possible by an isomorphism between the Drift-Poisson equations governing electron plasma dynamics and
the 2D Euler equations describing an ideal fluid. Here, the electron density is the analog of fluid vorticity, and the
electric potential that of the fluid stream function. External flows are imposed in 2D using a segmented electrode
spanning the length of the plasma. Details of the experimental procedure and data analysis are given, including the
capabilities and limitations of the experimental approach.

INTRODUCTION

Two-dimensional (2D) ideal fluids have been studied in the laboratory using strongly magnetized pure
electron plasma in a Penning-Malmberg trap as a model system [1]. In order to accomplish this, the plasma
is prepared so that, in a particular range of temporal and spatial scales, the plasma dynamics perpendicular
to the magnetic field are given by the Drift-Poisson equations

[
∂t −

1

B
(∇⊥φ× ẑ) · ∇⊥

]
〈n〉z = 0; ∇2

⊥φ = e〈n〉z/ε0, (1)

(in SI units) where ε0 is the permittivity of free space, e is the electron charge, ∇⊥ = ∂xx̂ + ∂yŷ is the
gradient operator perpendicular to the magnetic field B = Bẑ (assumed to be uniform throughout the
domain), 〈n〉z is the z-averaged electron density, and the drift velocity is v = −∇⊥φ× ẑ/B. These equations
describe self-advection of the electron density due to the E×B drift. In a similar manner, the dynamics of
a 2D ideal fluid can be described by self-advection of the vorticity field, as given by the 2D Euler equations

[∂t − (∇ψ × ẑ) · ∇]ω = 0; ∇2ψ = ω, (2)

where ψ is the fluid stream function in 2D, with fluid velocity v = −∇ψ × ẑ and vorticity ω = ∇× v. The
Drift-Poisson equations (Eq. 1) and the 2D Euler equations (Eq. 2) are isomorphic under the substitutions
φ/B → ψ and e〈n〉z/Bε0 → ω. Thus, the dynamics of the electron distribution n(x, y) correspond directly
to that of the vorticity distribution ω(x, y), and the electric potential φ is analogous to the stream function
ψ.

Quasi-2D fluids are found in both natural and man-made environments. Examples include geophysical
fluids (i.e., the oceans and atmospheres of Earth and other planets) [2], strongly magnetized laboratory
plasmas ranging from confined antimatter plasmas [3] to toroidal fusion devices [4], astrophysical disks [5],
airplane wakes [6], and mixing processes [7]. Although the dynamics of many of these systems are enriched
by various non-2D or non-ideal effects, the Euler equations (Eq. 2) are a commonly used simple paradigm
[8]. Inviscid conditions are difficult to create in the laboratory using traditional fluids (i.e., water tanks) [9],
so the electron plasma presents a unique tool for studying 2D ideal fluid behavior.
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Prior results involving this plasma/fluid correspondence include the formation [10] and stability [11] of
vortex crystals, vortex merger studies [12], turbulent cascade behavior [13], and inviscid damping of vortex
distortions [14], to name a few. Most of these studies focused on the free relaxation of an initial vorticity
distribution. However, when the boundary conditions of the cylindrical confining electrodes are specified, an
externally imposed, irrotational E×B flow can be created, which advects the vorticity. Certain aspects of
electron fluid dynamics under externally imposed electric fields have been investigated in Refs. [15] and [16].

In this paper, we describe an apparatus called the 8-Segment Trap (8ST) and the experimental proce-
dures that we have recently developed to study ideal 2D fluid dynamics in the presence of externally imposed
flows. A key feature of the apparatus is that the boundary conditions can be varied without violating the
assumptions of the plasma/fluid analogy. It consists of a specially designed Penning-Malmberg trap for elec-
tron plasma where the boundary is divided into eight equal azimuthal segments that extend axially over
the entire length of the plasma. A report of the first results from this device can be found in Ref. [17]. This
paper consists of a discussion of the experimental apparatus and procedure, data analysis and calibration
procedures, a discussion of the validity of the plasma/fluid analogy, examples of the type of results that can
be obtained, and a set of concluding remarks.

EXPERIMENTAL APPARATUS

Figure 1 shows a schematic diagram of the 8ST apparatus. Shown are the electron source (A), cryopump (B),
electrode structure (C), superconducting coils (D), and diagnostic equipment (E, F, G). The coils produce
an axial magnetic field B = 4.8 T which is approximately uniform over the electrodes (δB/B ∼ 0.01).
The cryopump maintains a pressure of about 10−9 torr inside the chamber. The electron source is a heated
tungsten cathode located in the flaring field region where Bz ≈ 0.03 T. It produces electron beams of width
∼ 5 mm and current ∼ 1 µA. Electrodes I, III, and V are used for axial confinement; they are typically biased
to Vc = −100 V. Electrode II is divided azimuthally into eight equal segments which can be independently
biased; this is the region in which the fluid experiments take place. Electrode IV is divided azimuthally into
four equal segments; these electrodes are used to control the plasma density profile via the Rotating Wall
(RW) technique [3].

The diagnostic system consists of a phosphor screen (E) biased to +5 kV which is imaged through a
window in the vacuum chamber and a lens (F) by a CCD camera (G). The phosphor screen is located in the
flaring field region opposite the electron source, where Bz ≈ 1.2 T. The wall radius of the 8ST is rw = 13
mm, the length of the entire electrode structure is 440 mm, and the length of electrode II is 260 mm. Typical
plasma parameters are total electron number N = 108 − 109, central electron density n = 1013 − 1015 m−3,
temperature T ≈ 0.1 eV, and plasma radius rp = 1− 5 mm.

EXTERNAL FLOW CAPABILITIES

During a fluid experiment the segments of electrode II are biased, creating vacuum electric fields which give
rise to an irrotational E×B flow that advects the trapped electrons (i.e., the vorticity). In 2D, the electric
potential inside the trap volume satisfies the Laplace equation ∇2φ = 0 with

φ(r, θ) =
∞∑

m=0

[
Am cos(mθ) +Bm sin(mθ)

]( r

rw

)m
, (3)

where the Am and Bm are expansion coefficients, given by

Am =
1

π

∫
dθ cos(mθ)φ(rw, θ); Bm =

1

π

∫
dθ sin(mθ)φ(rw, θ), (4)

where φ(rw, θ) is the applied boundary condition. Plasmas are typically prepared at the origin with rp � rw,
so the lowest-order expansion terms are dominant. With the segmented electrodes aligned with the coordinate
axes (x, y), the boundary conditions can often be chosen such that all Bm = 0.

Different choices of boundary conditions are shown in Fig. 2, including equipotential contours which
are analogous to fluid streamlines. An external flow with a dominant m = 1 term can be created by biasing
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FIGURE 1. Schematic diagram of 8ST apparatus in the (y, z) plane, including electron source (A), cryopump (B),
8ST electrodes (C), magnet coils (D), phosphor screen (E), optical lens (F), and CCD camera (G). Magnetic field
lines are shown schematically, as is a vacuum chamber enclosing the electrodes.

FIGURE 2. Choices of boundary conditions for electrode II, and the corresponding external flow field; (a) uniform
vertical flow, (b) irrotational shear flow, (c) simple strain flow, and (d) octupolar flow.2Boundary conditions are
shown as +Va (red), −Va (blue), and Va = 0 (gray), where biased electrodes are thickened. Streamlines are shown in
black, with arrows indicating flow direction.

the segments of electrode II to voltages Va(1, 1, 0,−1,−1,−1, 0, 1) [Fig. 2(a)], beginning with the segment
along the positive x-axis. This results in an approximately uniform flow field v = A1ŷ/Brw near the axis,
where A1 = 1.18Va, and the next largest coefficient is A3 = −0.16Va. This flow initially advects the plasma
away from the axis with no distortion; however, at later times the image charge induced in the wall leads to
dynamical orbits of the plasma [18]. Alternatively, the voltage configuration Va(1, 0, 0, 0, 0, 0, 0, 0) [shown in
Fig. 2(b)] generates an irrotational shear flow similar to that produced by a distant vortex structure.

A flow with a dominant m = 2 component can be generated by the voltage configuration
Va(1, 0,−1, 0,−1, 0,−1, 0) [Fig. 2(c)], with velocity v = ε(yx̂ + xŷ) where A2 = 0.9Va, the next nonzero
coefficient is A6 = 0.3Va, and ε ≡ 2A2/Br

2
w. This is a “simple strain flow” where 2ε is the applied strain

magnitude. This flow is frequently discussed in the fluid dynamics literature, and it has recently been stud-
ied in the 8ST [17]. Additionally, an octupolar flow (with a dominant m = 4 term) can be generated using
the boundary conditions Va(1,−1, 1,−1, 1,−1, 1,−1) [Fig. 2(d)]. Another interesting possibility, not yet ex-
ploited, involves a simple strain flow which is rotated about the trap axis. In the rotating frame, this appears
as a simple shear flow [19].

A uniform potential associated with nonzero A0 can modify the length of the plasma, and therefore
change the density (vorticity). Typically, boundary conditions are chosen such that A0 = 0 to avoid this
complication. The external flow can lead to a net translation of the vorticity away from the axis of the
trap, for example due to an m = 1 component of the flow, or due to m > 1 flows where the plasma is not
initially centered on the axis [20]. In order to avoid this complication, experiments are often restricted to
short timescales where the plasma remains near the trap center.

2 This figure is in color. See the online version for additional detail.
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For the flows discussed above, the Am are proportional to Va, so the magnitude of the external flow
velocity can be adjusted by varying Va over time. The temporal dependence of the external strain is set
using waveform generators. The only limitation is RC filtering from the electrical circuit, which presently
has a ∼ 1 µs time constant. Thus far, experiments with the 8ST have utilized only a square-pulse and a
linear-ramp time dependence.

The influence of these external flows on an initially stable, axisymmetric vortex is an important topic
in fluid dynamics, which can be studied in the 8ST. External influences can result in vortex deformation,
and partial or total destruction [9, 17], with profound implications for the transport of heat, momentum,
and passive scalars in a fluid. Alternatively, these external flows can be implemented serially in order to
generate other non-axisymmetric initial vorticity distributions (e.g., elliptical vortices or thin filaments).

RUN PROCEDURE

The procedure for a single run cycle is shown in Fig. 3, where voltage traces applied to the 8ST electrodes
are represented schematically. The run cycle typically takes 5 - 10 s. The majority of this time is occupied
by the preparation of the initial vorticity profile, with the fluid experiment itself taking only < 500 µs. At
the end of each run, the vorticity is diagnosed destructively using a phosphor screen diagnostic. Steps in
this process are given below.

• Programming. First, waveform generators with 1 µs accuracy are programmed to drive the segments
of electrode II with the desired voltage and time dependence.

• Fill plasma. Next, the trap is filled by injecting electrons. Electrode V is biased to voltage −Vc and
electrode I is biased to V = −Vl where |Vl| < |Vc|. The electron source is biased to an intermediate
voltage Ve, where |Vl| < |Ve| < |Vc| such that electrons have sufficient energy to transit electrode I but
not electrode V. Electrons become confined between electrodes I and V by scattering energy from the
parallel to perpendicular direction, either through collisions or conceivably by a two-stream instability
[21]. This process continues for 0.1 - 1 s, until the desired total electron number is achieved. Then,
electrode I is ramped to voltage −Vc to prevent further filling.

• First diocotron damp. The initial electron density distribution is typically offset from the symmetry
axis, resulting in an m = 1 diocotron mode [3], where m is an azimuthal wave number. This mode is
damped in 100 - 300 ms using a feedback circuit connected to two segments of electrode II.

• Profile conditioning. Then, the Rotating Wall (RW) is used to condition the radial density profile
[3]. Here, the 4 segments of electrode VI are biased to generate a uniform electric field near the origin
which rotates azimuthally at frequency fw, injecting or removing angular momentum from the plasma.
In this way, the vorticity profile ω(r) can be changed. A few examples of RW profile control and free
relaxation of a profile are shown in Fig. 4.

• Cut plasma. The RW profile control is necessarily conducted with plasma confined between electrodes
I and V, however the fluid experiments are conducted with plasma confined between electrodes I and
III. Therefore, the plasma is “cut” by ramping electrode III abruptly from ground to −Vc. The plasma
remaining between electrodes III and V is discarded.

• Second diocotron damp. The cutting process can result in a small amplitude m = 1 diocotron
mode. Thus, the damping circuit is once again implemented to position the plasma centroid as close
as possible to the symmetry axis.

• Cooling. The plasma is held for about 500 ms, and the plasma cools via cyclotron radiation to T ∼ 0.1
eV with a time constant of τc = 150 ms [22]. At this point, the plasma has the properties necessary
for experiments in the fluid regime.

• Fluid experiment. Prior to the fluid experiment, the CCD camera is triggered with an exposure
time long enough to capture the event. Then, the external flow is applied by triggering the waveform
generators. The system is allowed to evolve for some time, then the segments of electrode II are
grounded, and immediately thereafter electrode III is grounded such that the electrons stream along
the field and impinge on the phosphor screen. The resulting light is measured with the CCD camera.

• Dark exposure. After diagnosis, another camera exposure is taken in the absence of plasma, and the
two exposures are subtracted to eliminate background noise.
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FIGURE 3. Serial steps in the experimental procedure, shown as voltage traces on the 8ST electrodes.2 Labels
A, I-V correspond to voltages on the electron source and electrodes in Fig. 1. Shown are a square pulse (solid) and
linear ramp (dashed) external flow time dependence, with bipolar boundary conditions.

FIGURE 4. Demonstration of RW vorticity profile conditioning and profile relaxation. (a) compression to a quasi-
flat profile with fw = 50 kHz over 3 s (blue to red); (b) compression to a Gaussian profile with fw = 1 MHz over
500 ms; (c) reverse RW expansion to a quasi-flat profile with fw = −1 MHz over 1 s; (d) a profile before (solid) and
after (dashed) 10 s of free relaxation, showing a small loss of particles to the wall.

The end result is a CCD image of the electron density distribution integrated over the axial direction
[see, for example, Fig. 5(a)]. This data represents a measurement of the 2D vorticity field at each CCD pixel.
Runs can be repeated to reduce noise, or the protocol can be varied, for example to record time series data
of the vorticity evolution.

DATA ANALYSIS

Using knowledge of the applied boundary conditions, the Poisson equation ∇2ψ = ω is solved using a
numerical finite difference algorithm to find the stream function at each CCD pixel. Then, the velocity
components (vx, vy) are determined by numerically differentiating the stream function. Second derivatives
of the stream function are then found, and used to calculate quantities such as the local strain magnitude
s(x, y) = ±[4ψ2

xy + (ψxx − ψyy)2]1/2 (where subscripts indicate partial derivatives), and the Okubo-Weiss

local stability parameter Q(x, y) = s2 − ω2 [23]. Figure 5(a) shows a CCD image of an axisymmetric vortex
on the domain axis with a quasi-flat profile and central vorticity ω0 = 228 krad/s, and Fig. 5(b) shows the
same image overlaid with contours of the stream function due to an applied strain with ε∗ ≡ ε/ω0 = 0.116.
Figure 5(c) shows the stream function separatrix and velocity magnitude.

For axisymmetric vortices, it is useful to perform an azimuthal average of the vorticity data to extract
the radial profile, ω(r) = (2π)−1

∫
ωdθ. Examples of profiles obtained in this manner are shown in Fig. 4.

Low-order spatial moments of the vorticity distribution are also calculated, including the total circulation
Γ =

∫
ωdA, the centroid pi = Γ−1

∫
riωdA, and the quadrupole tensor qij = Γ−1

∫
(3rirj−r2δij)ωdA, where

ri are the spatial coordinates and δij is the Kronecker delta function.
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FIGURE 5. Analysis of a CCD image.2 (a) vorticity data (color map) with ω0 = 228 krad/s, truncated at 0.05ω0;
(b) vorticity overlaid with numerically calculated streamlines (black lines) and separatrix (thick black line) under
applied strain with ε∗ = 0.116; (c) separatrix and velocity magnitude (color map).

Elliptical modes of a vortex can be excited, for example, by an external strain flow [see Fig. 2(c)] [19],
however, filamentary structures which form outside the vortex core can influence the quadrupole moment.
In order to diagnose elliptical distortions of the core, a numerical routine is used to fit an ellipse to the
half-maximum vorticity contour. Here, the aspect ratio λ and orientation ξ of the ellipse are fit to the set
of CCD pixels with vorticity in the range 0.4 ≤ ω/ω0 ≤ 0.6, where ω0 is the peak vorticity. In this way, a
robust representation of elliptical distortions of the vortex core is obtained. Examples of the elliptical fitting
routine are shown in Fig. 6

CALIBRATION

In order to obtain quantitative data, the CCD diagnostic spatial resolution and signal magnitude must be
calibrated. From the confinement region to the phosphor screen, the electron distribution is magnified by
a factor of two due to the flaring magnetic field. The flourescent light is then focused onto the CCD chip
through an optical lens system. The total magnification factor can be found by preparing a plasma which
fills the entire trap volume, as shown in Fig. 7(a), thus providing a measurement of rw on the CCD image.
Alternatively, the spatial calibration can be obtained using a plasma subjected to a strong external strain
flow [17], as shown in Fig. 7(b). In this case, the plasma collapses to a thin filament which is advected
through small gaps between the segmented electrodes. The orientation of the filament and the point at
which the signal disappears give a calibration of rw and the orientation of the segments. Figure 7(c) shows
the segments of electrode II fitted using these techniques. The pixel calibration is presently 1 pixel = 33 µm.

The vorticity is calibrated by measuring the rotation rate of a slightly elliptical vortex. A quasi-flat
vorticity profile is prepared, and excited to a small aspect ratio using an external strain flow, and then
allowed to rotate freely at the linear rate dξ/dt = ω0/4 [24]. The orientation ξ(t) is measured using the
fitting routine described above. Using this procedure, the measured vorticity is calibrated to the CCD signal
magnitude in the vortex core. Figure 8 shows the free evolution of (λ, ξ) for three different initial values of
λ. Although the aspect ratio decreases due to inviscid damping [14], the rotation rate is initially constant
for 1.2 ≤ λ ≤ 1.8, and a robust calibration of the vorticity magnitude is obtained.

The external flow field is completely specified by the electrode geometry and knowledge of the boundary
conditions. However, the external flow can also be diagnosed in situ. For example, a uniform flow such as that
shown in Fig. 2(a), when imposed suddenly, will cause the plasma to drift uniformly at velocity v = A1/Brw.
This velocity can be measured using the phosphor screen, thus calibrating the external flow strength. Another
calibration technique involves the simple strain flow [Fig. 2(c)]. When the normalized strain ε∗ is sufficiently
large, the plasma will behave passively, distorting elliptically with aspect ratio λ(t) = exp(2εt) [19]. The
time dependence of the aspect ratio can be measured using the elliptical fitting routine described above, thus
calibrating the external strain magnitude. Similar techniques using slowly ramped (i.e., adiabatic) uniform
flows and simple strain flows also yield calibrations of the external flow.
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FIGURE 6. Demonstration of ellipse fitting routine, for two different instances of vorticity data (a) and (b).2 Panel
(c) shows a close-up region given by the square in panel (b). Pixels between 40-60% of ω0 are highlighted (black
dots), and the elliptical fit to these points is shown (magenta line).

FIGURE 7. Spatial calibration of the CCD diagnostic.2 (a) an image of plasma filling the entire trap volume; (b)
overlaid images of four plasmas during destruction by an external strain flow; (c) data from panels (a) and (b) fitted
with the 8-segment electrodes (black) and their orientations (dashed).

Figure 9 shows measurements of the strain magnitude. In panel (a), exponential curves are fitted to λ(t)
data to extract ε. In panel (b), the measured ε is plotted against the applied voltage Va, showing a linear
dependence for ε∗ > 0.23 with slope ε/Va = 1923(V s)−1 (dashed), consistent with the assumption that
the plasma is behaving passively. Other techniques (uniform flow, slowly ramped flows) are consistent with
this calibration factor, leading us to conclude that the strain calibration technique described here is robust.
However, the calibration factor disagrees slightly from the value calculated from the voltage and electrode
geometry, ε/Va = 2212(V s)−1 (solid). Presently, the exact source of this discrepancy is not understood.

LIMITATIONS TO THE PLASMA/FLUID ANALOGY

In order for the plasma/fluid analogy to be valid, the perpendicular dynamics of the plasma must follow
the Drift-Poisson equations (Eq. 1). This amounts to a separation of spatial and temporal scales. Frequency

scales must obey fg � fb � fv � fc where fg = eB/m is the gyrofrequency; fb =
√
T/m/Lp is the

axial bounce frequency with Lp the axial length of the plasma and
√
T/m the thermal velocity; fv is the

frequency scale of the fluid motion; and fc the electron-electron collision frequency. Spatial scales must obey
the relations rg � rv, rw � Lp, where rg is the gyroradius and rv the scale of vorticity features. Described
here are non-ideal, non-2D, and non-fluid effects which arise when these conditions are not satisfied. Also
given are the degrees to which these assumptions are satisfied in the 8ST.
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FIGURE 8. Vorticity calibration process. (a) λ(t) and (b) ξ(t) are shown for a freely rotating quasi-flat vortex
excited to λ = 1.35 (circles), 1.55 (squares), and 1.75 (triangles). Included is a linear fit (dashed) to the ξ(t) data for
0 ≤ t ≤ 16 µs, where ω0 = 488 krad/s.

• 3D effects. The confinement electrodes (I, III, and V) produce a radial vacuum electric field which
gives rise to an E×B background rotation known as the “magnetron” drift [3]. This effect is minimized
by using a large aspect ratio trap, with rw � Lp. In the 8ST, rw/Lp = 10 and the magnetron rotation
frequency near the origin is ∼ 150 Hz, three orders of magnitude below fv. Additionally, 3D geometric
effects can be introduced by a misalignment of the electrode axis with the magnetic field. However, to
our knowledge no significant 3D effects are observed in the 8ST.

• Small spatial scales. At small spatial scales, the fluid analogy can be broken by finite gyroradius
effects and discrete particle effects. In the 8ST the gyroradius is rg = 0.5 µm, 2 orders of magnitude
below the CCD resolution. Discrete particle effects are expected at spatial scales approaching the
inter-particle spacing, which is (nLp)−1/2 = (ωBε0Lp/e)

−1/2 = 0.125 ω−1/2 mm. Therefore, the inter-
particle spacing approaches the CCD pixel size for ω ≈ 14 rad/s, 4 orders of magnitude lower than
the typical central vorticity. Such a signal would be well below the CCD noise floor, which is typically
∼ 10 krad/s.

• Viscosity. Viscosity is present in a pure electron plasma as a result of electron-electron collisions;
however it differs fundamentally from the hydrodynamic viscosity appearing in the Navier-Stokes
equations. In general, the viscosity varies with electron density inside the plasma. There is no viscosity
outside of the plasma (i.e., in irrotational regions of the flow), and so the system obeys free-slip
boundary conditions. For a more detailed discussion of electron plasma viscosity, see Ref. [25].

• Plasma expansion. For a plasma isolated from the boundary, viscosity itself cannot drive net radial
vorticity transport, in contrast with viscous hydrodynamic vortices [26]. In practice, small asymmetries
and construction errors in the apparatus (for example, gaps between the segmented electrodes) can
drive outward radial transport of the plasma [27], thus behaving like an effective viscosity. In the 8ST,
the ratio of the decay time of the central vorticity to the vortex rotation period is > 106 [see Fig. 4(d)].

• Plasma re-entry. For sufficiently large values of strain magnitude, some or all of the electron distri-
bution may be advected out of the trap through the small gaps between the 8-segment electrodes [17].
It is routinely observed that some electrons orbit the biased segment and return into the trap (c.f. Fig.
10). Apparently, these particles are confined axially and obey E × B drift dynamics in the vacuum
region outside the segmented electrodes. Although interesting, this behavior can be detrimental to the
experiments, since the re-entrant circulation can modify the dynamics of the remaining circulation.

• Dump rotation. During the imaging process, the electrons must travel axially from the 8-segment
region to the phosphor screen. In this time, the density distribution continues to drift in the plane
perpendicular to B. For example, an elliptical vortex may rotate as much as 10◦ during diagnosis [17].
The amount of rotation is measured, and the data corrected accordingly.
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FIGURE 9. Strain calibration process. (a) measurements of λ(t) for ε∗ = 0.18 − 0.27 (blue to red), with ω0 = 420
krad/s; (b) measurements of ε(Va) given by exponential fits to λ(t). The calibrated strain to voltage ratio (dashed)
is compared to the calculated value (solid).

FIGURE 10. Demonstration of electron re-entry after a straining event with ε∗ = 0.25, at times t = (a) 20, (b)
30, and (c) 40 µs.2 Electrons are advected through gaps between segmented electrodes, then drift around the biased
segment and eventually return to the trap volume.

The effects described in this section break the 2D fluid analogy, and so care must be taken to avoid
them. In most cases, this can be accomplished by choosing appropriate values of the vorticity and experiment
duration, such that the necessary separation of scales is acheived.

SUMMARY

The 8ST apparatus discussed here is a Penning-Malmberg electron plasma confinement device designed
specifically to study the physics of ideal 2D fluids subject to external flows. This is accomplished using a
segmented electrode which extends over the entire length of the plasma. The individual segments can be
biased to create a 2D electric potential which gives rise to an externally imposed, irrotational E ×B flow.
Specific details of the 8ST have been described, including its capabilities, limitations, and the standard
operating procedure.

The experimental conditions described here are difficult to achieve with water tanks or other types
of electron plasma devices. The rotating wall technique [3] allows for excellent control over the initial (ax-
isymmetric) vorticity profile. In particular, quasi-flat profiles are readily obtained in the 8ST (c.f. Fig. 4),
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whereas in a traditional laboratory fluid (i.e., water) vorticity gradients are quickly reduced due to viscos-
ity [9]. These flat profiles can be used to test the predictions of well-known theoretical work assuming a
piecewise-constant elliptical vorticity distribution [6, 19]. Additionally, the 8ST allows for arbitrary strength
and time dependence of the external flow, since the boundary conditions are specified in pure 2D. Recent
work in the 8ST has studied dynamical orbits and destruction of quasi-flat vortices in external 2D strain
flows [17]. Current experiments are using the rotating wall profile control technique to study departures from
the elliptical patch theory when the profile smoothness is varied, in an attempt to model realistic vortices
[28].

Future experiments with the 8ST or similar devices could investigate other types of external flows (shear,
octupole, etc.) as well as time-dependent flows. For example, a Gaussian shear or strain pulse could be used
to mimic a vortex scattering event; a strong transient strain pulse could be used to generate a filament of
vorticity and study its dynamics; a strain flow which is sinusoidal in time could be implemented to study
resonant behavior and the onset of turbulence; and relaxing turbulence could be studied in the presence of
a background strain flow.
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