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Experiments and vortex-in-cell simulations are used to study an initially axisymmetric, spatially
distributed vortex subject to an externally imposed strain flow. The experiments use a magnetized pure
electron plasma to model an inviscid two-dimensional fluid. The results are compared to a theory assuming
an elliptical region of constant vorticity. For relatively flat vorticity profiles, the dynamics and stability
threshold are in close quantitative agreement with the theory. Physics beyond the constant-vorticity model,
such as vortex stripping, is investigated by studying the behavior of nonflat vorticity profiles.
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Fluid vortices are common in nature and are important in
such systems as magnetized plasmas [1,2], geophysical
fluids [3], and fluids of astrophysical interest [4]. While
isolated vortices tend toward axisymmetry [5], they can be
deformed and/or destroyed by external shear or strain
flows. Experiments in viscous fluids such as water and
simulations have shown that a strained vortex may undergo
partial or total destruction as the vorticity is pulled away in
thin filaments [6,7], but a quantitative understanding of
many aspects of these processes is incomplete.
Presented here is a study of the relatively simple case of

the two-dimensional (2D) dynamics when a pure strain
flow is rapidly applied to an initially axisymmetric, isolated
vortex in an inviscid fluid. The strain velocity field is
vs ¼ ϵðyx̂þ xŷÞ, where 2ϵ is the strain rate, and the
vorticity is ω ¼ ∇ × v with v the fluid velocity. The
dependence of vortex dynamics on the magnitude of ϵ
and on the initial radial vorticity profile is investigated. The
experiments are done using a magnetized, pure electron
plasma to model an incompressible, inviscid 2D fluid [8].
An advantage of this system is that electron density, which
is analogous to fluid vorticity, can be measured directly.
Complementary vortex-in-cell simulations are conducted to
validate the 2D nature of the experimental results and to
extend the parameter range of these studies [9].
In the work reported here, the critical normalized

threshold ϵc=ω for vortex destruction is measured, and
vortex dynamics both above and below ϵc is studied. A
central result is that, for constant (flat top) vorticity profiles,
the results agree reasonably well with the predictions of a
simple, analytic dynamical model due to Kida [10], while
for extended (nonflat) profiles, stripping at the periphery of
the vortex leads to a loss of circulation not accounted for in
the Kida model.
The observed behavior for an approximately flat profile

is illustrated in Fig. 1. Below ϵc, the vortex distorts
elliptically due to the strain and rotates in the direction
of the circulation as the ellipticity λ ¼ a=b grows, where a
and b are the semimajor and semiminor axes, while outer

layers are advected away from the vortex by the strain
velocity field. As the vortex continues to rotate, λ decreases
back toward axisymmetry, and then the cycle repeats
[cf. Fig. 1(g)].

FIG. 1. Measured vorticity field (colormap, vorticity out of the
page) and stream function (black lines) at t ¼ 0, 40, and 80 μs:
below threshold, ϵ=ω0 ¼ 0.116, (a)–(c), and above threshold,
ϵ=ω0 ¼ 0.13, (d)–(f), where ω0 is the peak vorticity. The initial
vorticity profile is approximately flat. The separatrix is shown
(thick black line) with saddle (center) points marked X (O).
Panels (g) and (h) show elliptical fits to the half-maximum
vorticity contours at 20 μs intervals starting at t ¼ 0 for ϵ=ω ¼
0.116 and 0.13, respectively.
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In contrast, above ϵc, the rotation stalls and reverses
direction, back toward the strain axis (45° in Fig. 1), and λ
grows without bound [cf. Fig. 1(h)]. In this case, the
fluid stream function eventually changes topology
[cf. Fig. 1(e)–(f)], leaving no closed streamlines. For nonflat
initial vorticity profiles, destruction is more gradual in time,
with significant stripping of peripheral vorticity observed
before all circulation is lost.
A single-component electron plasma in a strong, uniform

magnetic field obeys the drift-Poisson equations [8]

ð∂t þ v · ∇⊥Þhniz ¼ 0; ∇2⊥ϕ ¼ −ehniz=ε0; ð1Þ

where the magnetic field is B ¼ Bẑ, hniz is the z-averaged
electron density, and ϕ is the 2D electric potential. The 2D
velocity field is given by the E × B drift v ¼ −∇ϕ=B × ẑ.
Making the substitutions ðe=Bε0Þhniz → ω andϕ=B → ψ

(in SI units), where ψ is the stream function, yields the Euler
equations that describe 2D incompressible, inviscid fluid
flow. Thus, electron density is the analog of fluid vorticity
and electric potential is the analog of the fluid stream
function. This correspondence has been used to elucidate
many facets of 2D vortex dynamics [9,11–13].
The electron plasmas are confined in the Penning-

Malmberg trap illustrated in Fig. 2 with B ¼ 4.8 T
[14,15]. A long cylindrical confinement region (inner radius
rw ¼ 13 mm, length L ¼ 260 mm) is surrounded by an
electrode divided into eight equal 41° azimuthal segments.
By applying independent voltages to these segments, the
confined plasma is subjected to an externally imposed

irrotational E × B flow field which advects the electron
density (i.e., vorticity) in the plane perpendicular to B.
The vorticity field is measured destructively by recording

the z-integrated plasma density using a phosphor screen and
CCD camera, with a resolution of 104 pixels=m [15]. Shot-
to-shot variations are typically < 5%. The plasma density is
calibrated against the light measured by the CCD by exciting
a small-amplitude elliptical distortion (λ ≈ 1.3) and meas-
uring the rotation period τ, where the vorticity is given by
ω ¼ 8π=τ [16]. Typical plasma parameters are electron
numbers N ∼ 0.7–4 × 108, electron densities n ∼ 0.3–3×
1014 m−3, and plasma temperatures Te ∼ 1 eV.
The validity of the 2D plasma-fluid analogy is ensured

by the separations of temporal and spatial scales. The
frequency ordering is fg, fb ≫ fE ≫ fc, where fg ¼
130 GHz is the gyrofrequency, fb ≈ 1 MHz is the axial
bounce frequency, fE ≡ ω=4π ∼ 10–50 kHz is the typical
E × B drift frequency, and fc ≈ 3 kHz is the particle
collision frequency. Spatial scales are ordered as
rg ≪ rv, rw ≪ L, where rg ¼ 0.5 μm is the gyroradius,
and rv ≈ 0.1–10 mm is the scale of typical vorticity
features studied here.
Discrete particle and finite gyroradius effects may be

expected when the vorticity filaments are thinned to sub-
μm width, on longer time scales than those discussed here.
Three-dimensional corrections are estimated to be <1%.
Dissipation is negligible; the plasma obeys free-slip
boundary conditions, and the effective Reynolds number
Re ∼ 105 as estimated from the decay time of the peak
vorticity which is ∼10 s. Under these conditions, the
plasma obeys the drift-Poission Eqs. (1).
The experiments are conducted as follows: An electron

gun [Fig. 2(a) I] is used to fill electrodes III–V with plasma
in a potential well of depth Vc. Then a feedback circuit
connected to two segments of III is used to damp them ¼ 1
diocotron mode [15], and the segmented electrode V is used
to condition the density profile nðrÞ using the rotating-wall
technique [17]. The plasma is then “cut” axially by ramping
electrode IV to voltage −Vc. The m ¼ 1 mode is damped
again, and the plasma is allowed to cyclotron cool to
T ∼ 1 eV [18]. This results in an axisymmetric vorticity
distribution centered on the trap axis in region III.
Experiments are done with a constant strain field imposed
in region III during the time interval t ¼ 0 → tf. At t ¼ tf,
electrodes III and IV are grounded, and the plasma density
is imaged using the CCD diagnostic.
Figure 2(b) shows the equipotential contours (black

lines, arrows indicate direction), which are streamlines of
the E × B strain flow due to the application of voltages
þVs, 0, −Vs, 0,þVs, 0, −Vs, 0 to the segments of electrode
III. The stream function is calculated by solving the Poisson
equation numerically on the CCD data grid, subject to the
boundary conditions.
The second order term of the cylindrical Laplace solution

dominates the vacuum potential near the trap axis:

FIG. 2. (a) Experimental arrangement with electron source (I),
confinement electrodes (II, IV, and VI), 8-sector electrode (III), 4-
sector electrode (V), phosphor screen (VII), CCD diagnostic
(VIII); (b) streamlines (black) of external flow created by
electrode III voltages þVs (red), −Vs (blue), V ¼ 0 (black);
dashed rectangle is the region shown in Figs. 1(a)–1(f); B out of
the page; and (c) the initial experimental vorticity profiles: green,
smoothly decreasing (n ¼ 3), and magenta, approximately flat
top (n ¼ 6, cf. Fig. 1). Dashed lines are fits to Eq. (2).
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ϕ2 ¼ ½ðA2VsÞ=ð2πε0Þ�ðr2=r2wÞ cosð2θÞ, where A2 ≈ 0.9
for the voltage configuration described above. This
yields a flow field vs ¼ ϵðyx̂þ xŷÞ with strain magnitude
ϵ¼VsA2=2πε0Br2w¼2220Vs with Vs in volts and ϵ in s−1.
However, when the strain magnitude is calibrated in situ

by measuring the plasma displacement from an applied
m ¼ 1 perturbation [19], a slightly larger value of ϵ ¼
2390 Vs is obtained. Although the 8% discrepancy
between predicted and measured strain is not presently
understood, the m ¼ 1 calibration is consistent with direct
measurement of strain using passive advection of vorticity
where ϵ=ω ≫ ϵc=ω [20]. Thus, the calibrated strain is used
for the data presented here.
The radial vorticity profiles ωðrÞ studied here are

illustrated in Fig. 2(c). They can be parametrized approx-
imately by

ωðrÞ ¼ ω0 exp½−ðr=RÞn�; ð2Þ

where relatively flat profiles correspond to smoothness
index n ¼ 5–7 and nonflat ones to n ¼ 2–3, as shown by
the dashed lines in Fig. 2(c).
The strain field is imposed using a square voltage pulse

with a rise time ∼2 μs. The applied strain results in an
m ¼ 1 instability that advects the vortex away from the trap
axis [21]. However, careful centering of the plasma ensures
that the m ¼ 1 displacement is sufficiently small (<0.1rw)
on the short time scales studied here (tf < 300 μs), so that
the dynamics are dominated by the ϕ2 term of the potential.
The drift-Poisson Eqs. (1) are solved numerically using

2D vortex-in-cell (VIC) fluid simulations with grid size up
to 150 × 150 and particle number up to 4 × 104 using
cylindrical free-slip boundary conditions and the externally
applied strain flows used in the experiments [9]. Them ¼ 1
mode is feedback stabilized, allowing for a larger tf than is
possible experimentally.
As introduced above, examples of experimental vortex

evolution are shown in Fig. 1, where an external strain is
imposed instantaneously to an initial vorticity profile (color
maps) with ω0 ¼ 220 krad=s and a quasiflat profile with
n ¼ 6. Slightly below ϵc at ϵ=ω0 ¼ 0.116 [(a)–(c)], the
vortex periphery is stripped, but the core survives. Slightly
above threshold, at ϵ=ω0 ¼ 0.13 [(d)–(f)], the vortex is
destroyed.
The stream function is also shown (black lines), includ-

ing saddle (X) and center (O) points, defined by v ¼ 0.
Initially, the stream function has two saddle points defining
the separatrix (thick black line) and enclosing a single
center point. As the vortex breaks, the saddle points
annihilate the center point, leaving a single saddle point
and no closed streamlines. All of the circulation is then
advected out of the system through small azimuthal gaps
between the segments of electrode III.
Figure 3 shows the temporal evolution of quantities

calculated from the experimentally obtained vorticity and

stream function data, for an n ¼ 6 initial profile and four
strain values, two below and two above the instability
threshold. As shown in panel (a), the total normalized
circulation, integrated over the domain, Γ=Γ0 ¼

R
dAωðtÞ=R

dAωðt ¼ 0Þ, changes relatively little over this time inter-
val. Panel (b) shows the circulation contained inside the
separatrix and illustrates the shedding of peripheral vorticity
for below threshold strain values and the shrinking and
disappearance of the separatrix for above threshold strains.
In panel (c), the ratio of the squared total strain to

vorticity, s2=ω2
0, is shown as evaluated at the origin

ðx; yÞ ¼ ð0; 0Þ, where s2 ≡ 4ψ2
xy þ ðψxx − ψyyÞ2 and sub-

scripts indicate partial derivatives. At t ¼ 0,
s2 ¼ 4ϵ2 ≪ ω2

0, whereas the total strain at vortex destruc-
tion is dominated by the self-strain due to vortex deforma-
tion (i.e., s2=ω2

0 ≈ 1 at the breaking point). This large
increase in s illustrates the profound effect of vortex self-
organization in the destruction process. The loss of stability
at the vortex center is consistent with the Okubo-Weiss
criterion [22,23], which predicts a local instability
when s2=ω2 > 1.
In Fig. 4, the observed elliptical distortions of the vortex

cores are compared to the predictions of the Kida elliptical
patch model, which is described by the dynamical equa-
tions [10]

_λ¼ 2ϵλcosð2ξÞ; _ξ¼−ϵ
λ2þ1

λ2−1
sinð2ξÞþ ωλ

ðλþ1Þ2 ; ð3Þ

FIG. 3. Evolution of (a) total normalized circulation, (b) that
inside the separatrix, and (c) total squared strain at the origin,
normalized to ω0

2 for ϵ=ω0 ¼ 0.087 (black), 0.116 (blue), 0.130
(green), and 0.152 (magenta), where ω0 ¼ 220 krad=s and
n ¼ 6. The ϵ=ω0 ¼ 0.116 and 0.130 data correspond to Fig. 1.
In (c), the red dashed line is the Okubo-Weiss local stability
boundary. Solid lines are guides to the eye.
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where ξ is the angle of orientation of the ellipse with respect
to the strain axis.
Ellipses are fit to the measured half-maximum vorticity

contours [i.e., pixels with 0.4 < ω=ω0 < 0.6, the procedure
used inFigs. 1(g) and 1(h)] to extract experimental valuesof λ
and ξ. These data are plotted in polar coordinates (λ − 1, ξ)
(symbols, with three data points per time step). Experimental
data for ξ were corrected by Δξ≃ −10° to account for
rotation during diagnosis. While accurate for λ ≤ 4, Δξ will
be smaller as λ increases. Also shown are solutions toEqs. (3)
(lines) [cf. Ref. [10], Eq. (3.4)]. The periodic orbits for
ϵ ¼ 0.087 and 0.116 have measured periods of 68 and
112� 5 μs, respectively, as compared with the Kida pre-
dictions of 66 and 112 μs. All predictions are in good
agreement with the experimental results. The dashed line
in Fig. 4 marks the critical ellipticity at which the vortex
switches direction (_ξ ¼ 0) and begins to rotate clockwise.
Figure 5(a) showsmeasurements of ϵc=ω0 as a function of

ω0, for flat (magenta) and nonflat (green) vorticity profiles
with R=rw ¼ 0.1–0.2 (experiments) and R=rw ¼ 0.15 (sim-
ulations). These data (vertical bars to indicate uncertainty)
and the VIC simulations (shaded bars) are compared with
the theoretical prediction of the Kida model (dashed line,
ϵc=ω0 ¼ 0.123), and the equilibrium threshold (dotted line,
ϵc=ω0 ¼ 0.15) derived by Moore and Saffman [24]. For flat
profiles, the data (simulation) values of ϵc=ω0 ¼ 0.124�
0.006 (0.124� 0.001) are in excellent agreement withKida.
In the language of bifurcation theory, destruction occurs
when the orbit in (λ − 1, ξ) space intersects an unstable fixed
point (i.e., a homoclinic orbit). Above this threshold, λ grows
without limit. In the equilibrium case, destruction occursvia
a saddle-node bifurcation.
For nonflat profiles, the data (simulations) give a slightly

lower threshold ϵc=ω0 ¼ 0.119� 0.006 (0.119� 0.001),
which appears to be related to enhanced stripping of the
outer parts of the vortex. This is illustrated further in

Fig. 5(b), which shows the total remaining circulation after
stripping has concluded vs ϵ=ω0. Nonflat profiles show
significant stripping much farther below threshold. Similar
effects have been observed in simulations of a vortex in a
shear flow [25]. The influence of stripping on the dynamics
and the decrease in ϵc for nonflat profiles (e.g., by
modifying the self-strain) is currently under investigation.
A technique is demonstrated here to study driven,

inviscid vortex dynamics in the laboratory with good
control of the initial vorticity profile, in a situation in
which the vorticity field can be measured directly with
good spatial and temporal resolution. The data show that
the stability and dynamics of an initially axisymmetric
vortex with flat core profile, immersed in an externally
imposed strain flow, can be described reasonably well by
the simple elliptical patch model due to Kida. A further
conclusion is that nonflat profiles are subject to enhanced
stripping at the periphery of the vortex, leading to a
measurable reduction of the stability threshold. These
experimental results are reinforced and supplemented using
2D vortex-in-cell simulations. A key opportunity for future
research will be study of time-dependent applied strain
flows and the transition to adiabatic behavior [26].
This work is potentially relevant to quasi-two-dimen-

sional vortex dynamics in a variety of systems, from oceans
and atmospheres of Earth and other planets [3], to

FIG. 4. Polar plot in (λ − 1, ξ) space: (a) periodic orbit for
ϵ ¼ 0.087, direction of time indicated by the arrow; and (b) peri-
odic and unstable orbits for ϵ ¼ 0.087 (black), 0.116 (blue), 0.13
(green) and 0.152 (magenta); dashed line at λ − 1 ¼ 4.4 marks
the instability threshold. Colored lines are the predictions of the
Kida model with no fitted parameters. The ϵ=ω0 ¼ 0.116 and
0.130 data correspond to Fig. 1. FIG. 5. (a) Theoretical destruction thresholds for constant strain

(dashed line) and equilibrium (dotted line), compared with
experiment (error bars), with green (magenta) corresponding to
n ¼ 2–3 (n ¼ 5–7) initial vorticity profiles; and simulation
results with shaded bars for n ¼ 3 (green) and n ¼ 7 (magenta);
and (b) normalized circulation remaining after a strain event of
duration tf. Magenta (green) circles correspond to simulations
with n ¼ 7 (n ¼ 3) and tf up to 90=ω0, while magneta (green)
triangles are from experiment with n ¼ 6 (n ¼ 2) and
tf ¼ 25=ω0. Solid and dashed lines in (b) are a guide to the
eye, vertical dashed line shows the theoretical destruction
threshold.
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confinement in tokamaks and similar fusion devices [1,27].
Directly related to the plasmas studied here, particle loss
can occur in Penning-Malmberg traps subject to strong
transverse electric fields, and this could impact, for exam-
ple, efforts to create and confine single-component anti-
matter plasmas [15]. Finally, stripping and filamentation
are closely related to the enstrophy cascade in 2D turbu-
lence, and so the results of experiments, such as those
described here, can be expected to serve as building blocks
towards understanding more complicated turbulent
flows [28].
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