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The perpendicular dynamics of a pure electron plasma column are investigated when the plasma spans
two Penning-Malmberg traps with noncoinciding axes. The plasma executes noncircular orbits described
by competing image-charge electric-field (diocotron) drifts from the two traps. A simple model is presented
that predicts a set of nested orbits in agreement with observed plasma trajectories.
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Good confinement of single-component plasmas is often
realized in a device known as the Penning-Malmberg (PM)
trap in which radial confinement is provided by a uniform
magnetic field and axial confinement is provided by
appropriate voltages on a set of cylindrical electrodes.
These devices have been useful for basic plasma physics
studies [1,2], and they have been key to advances in the
study and use of low-energy antimatter [3–7]. For an
azimuthally symmetric trap, conservation of canonical
angular momentum limits the plasma expansion [8].
Plasmas in these traps can execute stable, circular E × B
drift orbits about the trap axis, known as m ¼ 1 diocotron
modes, due to image-charge electric fields from the
surrounding electrodes. While confinement and equilibria
in nonaxisymmetric traps have been studied [9–13], there
have been relatively few studies of diocotron-mode dynam-
ics in such traps [14,15].
This Letter describes studies in a nonaxisymmetric

electrode structure that results in a new class of noncircular
diocotronlike drift orbits. The electrode structure, shown in
Fig. 1, provides the capability to move plasmas off the
magnetic axis of a large-diameter PM trap (the“master
cell”) and then allow them to expand along the magnetic
field into off-axis traps, referred to here as “storage cells.”
This configuration, known as a multicell trap, is being
investigated as a way to increase antimatter (positron)
storage capacity using multiple PM traps in the
same vacuum system and magnetic field [16–18]. The
results described here are also expected to be useful
in advanced scenarios for the production of low-energy
antihydrogen [19].
The focus here is on the plasma dynamics for the

situation shown in Fig. 1(b), when a plasma spans the
master cell and an off-axis storage cell. The image-field
drifts in the two cells compete, with each dominant in a
particular region of the orbit. The master cell (M) has
electrode radius rw ¼ 38.0 mm, while rw ¼ 6.0 mm for
the storage cell (S) which is located 30 mm off of the
master-cell axis. A third, on-axis cell (A), with rw ¼
8.0 mm is also used. All PM cells consist of multiple,
axially separated cylindrical electrodes, one of which is

segmented azimuthally in four equal parts. The entire
structure resides in a vacuum of ∼10−9 torr, in a uniform
axial magnetic field B ¼ 4.8 T. The electron plasmas
studied here cool via cyclotron radiation in a 1=e time
of 170 ms.
The initial electron plasmas in the master cell have

total numbers N ∼ 1–2 × 108, temperatures T ∼ 1 eV, radii
rp ∼ 0.5–1 mm, lengths Lp ∼ 80–130 mm, densities
1.2–1.6×1015m−3, axial bounce frequencies fb∼1MHz,
E ×B rotation frequencies fr ∼ 350–500 kHz, and dioco-
tron frequencies ∼100–800 Hz. The plasma parameters in
cells A and S are similar, except the diocotron frequencies

FIG. 1 (color online). (a) Schematic of the experimental
apparatus with a master cell and three off-axis and one on-axis
storage cells. (b) Electron plasma spanning the master cell and
cell S, and (c) outward spiraling trajectory of the plasma in the
master cell with a cartoon of the competing diocotron drifts vm
and vs.
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are ∼1–3 kHz. Typical expansion times are ∼60 s in the
master cell, and 10–20 s in the storage cells.
Experiments are conducted in fill-manipulate-image

cycles, beginning with the injection of electrons from a
heated cathode, on axis, into the master cell. The plasma
column is then displaced across B using the autoresonant
diocotron drive technique [17,20], resulting in an outward
spiraling trajectory such as that shown in Fig. 1(c). When
the ðr; θÞ location of the plasma in the master cell crosses
the off-axis location of cell S, the autoresonant drive is
turned off, and the confinement-gate electrode separating
the two cells is grounded (time t ¼ 0), allowing plasma to
expand into the storage cell. It is allowed to drift for some
time t, at which point the entire plasma is released,
accelerated onto a phosphor screen, and imaged using a
CCD camera. This provides a destructive diagnostic of
the z-integrated electron density σðr; θÞ ¼ R

dznðr; θ; zÞ.
By varying the delay time t between subsequent shots, the
density profile and plasma centroid are tracked to map the
E ×B drift trajectory of the plasma column.
A key result is that, when the plasma expands axially into

this nonaxisymmetric arrangement of two cells, it executes
noncircular, but periodic orbits, offset from the center of,
and bounded by, the walls of the smaller diameter cell. A
typical orbit is shown in Fig. 2 for a plasma spanning the
master and off-axis storage cell S. The position at the
injection time t ¼ 0 is marked by the arrow in the figure.
After a brief transient lasting roughly half a cycle
(∼400 μs), in which the plasma loses some particles to
the wall and equilibrates axially, it settles into a stable
periodic orbit which is tracked in steps of 50 μs for
∼6 cycles spanning ∼5 ms. Shown in Fig. 2(c) are the
z-integrated plasma density contours σðr; θÞ for a single
orbital period after the transient [i.e., the bar in Fig. 2(b)].
As shown in Fig. 3, the plasma motion may also be

monitored using the image charge signal on sectored
electrodes in the two cells. Prior to t ¼ 0, there is a large
amplitude diocotron mode with frequency f ∼ 800 Hz in
the master cell. After t ¼ 0, the signal from an orbit similar
to that of Fig. 2 is detected in the off-axis storage cell. At
t ¼ 5 ms, the plasma is “cut” at the boundary between the
cells by raising the gate voltage, and the signal from the
storage cell changes from the slower drift motion into a
pure diocotron mode (f ∼ 3 kHz). The plasma was then
dumped at t ¼ 10 ms. The large difference in the diocotron
frequencies, fd, between the master cell (t < 0) and storage
cell (t > 5 ms), is due primarily to the dependence of fd
on rw (discussed below). In contrast, when the plasma
spans both cells (0 < t < 5 ms), the motion is a competi-
tion between these two drifts.
Since the axial bounce frequency is much greater than

the diocotron frequency (i.e., fb ≫ fd), the plasma orbits
can be described by the axial bounce average of the E × B
drifts in the two cells. A simple model, discussed below,
predicts a fixed point and a series of nested, closed, periodic

orbits, shown in Fig. 2, restricted to the area of the smaller
cell S.
The m ¼ 1 diocotron mode has been studied extensively

for electron plasmas in PM traps [21]. Provided fb, fr ≫
fd (typical of the experiments described here), the plasma
acts as a rigid line of charge. The nonlinear diocotron
frequency for an infinite-length plasma, calculated from the
2D image electric fields, is

FIG. 2 (color online). Bounce-average orbit of a plasma
spanning the master and off-axis cell S, where rw ¼ 6.0 mm is
the radius of S, and the master-cell center is at x ¼ −5.0rw. The
orbit period is 850 μs. (a) Trajectory of plasma density centroid,
(b) centroid displacementD from cell axis vs time, and (c) density
contours for one orbit period, with the lowest contour being 5%
of the peak density. Also shown in (a) and (c) are expected orbits
predicted by a simple model using α ¼ 0.75.
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fd ¼
f1

1 − ðD=rwÞ2
; ð1Þ

where D is the displacement from the axis, and the linear
mode frequency is f1 ¼ eN=ð4π2ϵ0LpBr2wÞ.
Finite length corrections to Eq. (1) are important due

to the relatively large aspect ratio of the master cell [22].
A detailed model has been constructed that includes non-
perturbative finite length effects for large-amplitude modes,
the details of which will be published elsewhere [23].
The predictions are in good agreement with the measured
diocotron frequencies for 108 ≤ N ≤ 109.
In the model presented here, the total drift of the plasma

column is calculated by summing the contributions from
both cells,

~v ¼ 2πðDmfmθ̂m þDsfsθ̂sÞ; ð2Þ

where the Dj are plasma displacements, fj are diocotron
frequencies, and θ̂j are the azimuthal unit vectors measured
in the reference frame of cell j. Since the dynamics are
restricted to the area of cell S, a coordinate system centered
on it is used, with the center of cellM lying on the negative
x axis. Since jθmj ≤ 11° over the possible diocotron orbits
in cell S, θ̂m is taken to be constant, θ̂m ¼ ŷ in the reference
frame of Fig. 2.
The frequencies fj depend upon the instantaneous

number of particles Nj in each cell (i.e., equivalent to
calculating the bounce-averaged drift per particle and
multiplying by the total number). The Nj are assumed
constant in time, which was verified experimentally by
taking two CCD images at each time step, one before and
one after the plasma is cut, to separate Nm and Ns.
The typical bounce-average orbit trajectory encounters a

narrow range of master cell displacements 0.69 ≤ Dm ≤
0.76, that result in only ∼� 10% variation of fm across the

orbit, and so fm is taken to be constant. In the storage cell,
rw=Ls < 0.05 is small enough to neglect finite-length
effects, and so Eq. (1) is used to calculate fsðDsÞ.
With these assumptions, and in the coordinate system of

cell S, the bounce-averaged orbit equation becomes

~v=v0 ¼ αŷþ d
1 − d2

θ̂; ð3Þ

where d≡D=rw, α≡ vy=v0 with vy ≡ 2πDmfm (i.e., the
master cell diocotron drift velocity), and v0 ¼ 2πf1rw
evaluated for the storage cell. The parameter α, which is
the ratio of the master cell to storage cell drift, uniquely
determines a set of nested orbits corresponding to different
initial conditions in the ðr; θÞ plane at t ¼ 0. Such orbits are
shown in Figs. 2(a) and 2(c), with α chosen to fit the data.
There is a fixed point of Eq. (3) (the solution to ~v ¼ 0),

which lies on the x axis (y ¼ 0) at

x ¼ −ð2αÞ−1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4α2

p
− 1Þ: ð4Þ

The initial transient causes the plasma to cross orbits
(i.e., Hamiltonian preservation is violated for t≲ 500 μs),
and so, to approach this point, the initial condition must
be chosen such that the transient orbit-crossing behavior
ends as the trajectory approaches the fixed point. This is
demonstrated in Fig. 4, where the position at t ¼ 0 is
identified by an arrow. The plasma expands and loses
particles to the wall within the first 1 ms, then settles into a
long-lived state near the fixed point featuring expansion
and particle loss on a much longer time scale (at
least 50 ms).

FIG. 3 (color online). Signals from sectored electrodes in the
master and cell S during a bounce-averaged orbit. The master cell
diocotron mode is observed initially (t < 0), then the asymmetric
orbit is detected when the gate is grounded (0 < t < 5 ms), and,
finally, the storage cell diocotron mode is observed after the
plasma is cut (5 < t < 10 ms).

t = 0

FIG. 4 (color online). (a) A centroid trajectory, corresponding
to α ¼ 0.4, that remains near the fixed point for ∼50 ms; and (b)
and (c) density contours at 15 and 45 ms, respectively, showing
that the plasma is stable, albeit expanding.
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Similar orbits to that of Eq. (3) are expected if a uniform
transverse electric field is applied directly in a single
storage cell. This was tested, and the results shown in
Fig. 5 verify that this is indeed the case. With a plasma
confined solely in cell A (the on-axis storage cell), a static
transverse electric field is created at t ¼ 0 by rapidly
applying a voltage V1 (e.g., Δt ≤ 10 μs) to a 180° portion
of the electrodes, leaving the other 180° portion grounded.
The resulting orbit data are shown in Fig. 5, for the plasma
initially located near the axis of cell A, for three values of
V1. Increasing V1 increases α, and thus moves the sta-
tionary point further from the symmetry axis. Fits to the
data using Eq. (3), shown in Fig. 5, are in good agreement
with the measurements, thus confirming the validity of the
model for this situation also. Similar behavior has been
investigated by Chu et al. [15].
The values of α and v0 in Eq. (3) can be predicted from

the measured values ofNm andNs (or V1 andNs in the case
of a single-cell orbit) and calculation of the finite-length
diocotron frequencies. They can also be obtained by using
the model to fit the orbit shape (for α) and orbit period (for
v0 at fixed α). The approximate parameter values for the
data shown in Fig. 2 are Nm ¼ 6.5 × 107, Ns ¼ 5.5 × 107,
Lm ¼ 0.19 m, and Ls ¼ 0.17 m. The predicted (model fit)
values are α ¼ 0.32 ð0.75Þ, and v0 ¼ 32 ð23Þ m=s. For the
data in Fig. 5 and V1 ¼ 8 V, α ¼ 0.19 ð0.18Þ, and
v0 ¼ 74 ð112Þ m=s. Reasons for the discrepancies include
possible additional physics in the process of cutting the
plasma or at the boundary between the two cells, the
validity of the finite-length diocotron frequency model for
low N=L, and assumptions made regarding the bounce-
average dynamics.
It is shown here that, for a plasma spanning multiple

PM traps with displaced symmetry axes, the competition
between naturally occurring drifts results in stable, peri-
odic, bounce-averaged orbits. These orbits are expected to
be useful for plasma transfer into off-axis cells of a
multicell trap [17,18], since transfer times can be extended
to tens of milliseconds, as opposed to ∼50 μs if the master-
cell dynamics were to dominate.

The equilibria and dynamics of the orbits described here
are related to other phenomena, including an asymmetric
m ¼ 1 equilibrium plasma position that corresponds to the
stationary point of Eq. (3) [9], the adiabatic invariance of
the area enclosed by a noncircular drift orbit [14], equilibria
in PM traps with large static asymmetries [11,15,20], and
varying the size of a magnetron orbit in a Penning trap
using a transverse electric field [24]. Finally, pure-lepton
plasma dynamics are closely related to ideal, 2D fluid
dynamics. The z-dependent dynamics described here are
similar to the motion of a vortex or cyclonic structure in a
vertically sheared flow [25].
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