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Symbols and Notation

Cgs units are used throughout the thesis, except for a few practical formulae

employing units convenient to the experimentalist. Cylindrical coordinates (p, z, ¢)

appear most frequently, with occasional references to Cartesian coordinates (z,y, 2),

to spherical coordinates (r, 0, ¢) and to two different sets of spheroidal coordinates,

(€1,&2,8) and (&1, &5, ¢), which are defined in Sec. 2.2. The ¢ coordinate is the same

in all four cases.

A3(Ol)

function used in spheroidal equilibrium, Eq. (2.10)
coefficients in expansion of §®7,

coefficients in expansion of ‘M)},m

coefficients in expansion of image charge potential
magnetic field

magnetic field in center of trap

magnetic field at charge collectors

magnetic field at the cathode of the electron gun

speed of light

normalization of Boltzmann factor used in Poisson solution program
coefficients in expansion of trap potential

quartic coeff. in trap potential, a measure of anharmonicity
parameter involved in definition of (&1, &2, ¢) coordinates
parameter involved in definition of (;,&;, ) coordinates
charge of the proton

electric field

radial component of electric field
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Gm(a)
Gm(rp)
Tveam

ky (e, w)
ka(a)
ks

K,

N, ion

m /!
PI

particle kinetic energy along the magnetic field

particle kinetic energy perpendicular to the magnetic field
minimum energy required to ionize a neutral atom or molecule
minimum energy required for double ionization of a neutral
function defined in Eq. (4.7)

geometrical factor in theory of azimuthal modes of a spheroid
geometrical factor in theory of azimuthal modes of a cylinder
electron beam current

argument of P/™ in general mode dispersion relation

argument of Q" in general mode dispersion relation
Boltzmann constant

axial wavenumber of a mode

coefficient of fit to ion mode frequency data for V < V;
mode index

plasma length, along the axis of the trap

particle mass, or azimuthal dependence of mode (§® ~ e™?)
number density of plasma particles

density at the Brillouin limit

number density of neutral gas atoms or molecules
total number of plasma particles

total number of ions in the trap

total number of Ar* ions in the trap

neutral gas pressure

Legendre functions of the first kind

associated Legendre functions of the first kind

derivative of P/ with respect to its argument
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m !
l

q-(p)

qo

associated Legendre functions of the second kind (see App. A)
derivative of Q7" with respect to its argument

charge of a plasma particle

z-integrated particle density

qz(l’ = 0)

total plasma charge

spherical radius coordinate

radius of electron beam

radius of cathode of electron gun

maximum extent of the plasma in p

estimate of r,

radius of cylindrical electrode wall

magnetic mirror ratio at charge collectors

time

plasma temperature

confinement voltage, applied with opposite sign to ring and endcaps
potential in center of trap, nominally zero

critical potential above which single particles are not confined
minimum V to achieve n = ng for ion plasma

value of V for which plasma has o = 1/1/2

coordinate along the direction of the magnetic field

trap scale coordinate, nominally the distance from center to endcap
axial position of the plasma center of mass

plasma aspect ratio, L/2r,

ratio of specific heats (y = 3 for 1D expansions)

dielectric tensor for a single-component plasma
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€1, €2, €3 elements of €

0 polar angle of spherical coordinates

A wavelength of a mode

AD plasma Debye length

Athreshold minimum Ap for undamped C. M. motion in cylindrical trap
&1,6 spheroidal coordinates outside the plasma

&6 frequency-dependent spheroidal coordinates used inside the plasma
p cylindrical radius coordinate

Po minimum radius of ring electrode, po = V220

Pe radius of cyclotron orbit

Pd radius of magnetron drift orbit

o; ionization cross-section

Omax maximum value of o;

Ta exponential loss time of positrons due to annihilation

Te time-constant for cooling of electron or positron plasmas

¢ azimuthal angle coordinate

electrostatic potential

odi potential produced by plasma image charge

d., potential produced by plasma monopole moment (Q)
6® perturbation in ® caused by plasma mode

6@ perturbation inside the plasma

6P° perturbation outside the plasma

6%}, (I,m) component of §®

607, (I,m) component of §d°

w angular frequency

wo quadrupole mode frequency



quadrupole mode frequency predicted by cold fluid theory
frequency of axial oscillation of plasma center of mass
frequency of purely azimuthal mode with mode number m
plasma frequency

plasma rotation frequency

harmonic axial frequency of quadrupole trap

value of w, altered by image charge effects

cyclotron frequency, ¢ B/mc

cyclotron frequency down-shifted by quadrupole electric field
magnetron frequency

vortex frequency, Q. — 2w,
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ABSTRACT OF THE DISSERTATION

Electrostatic Oscillations of Spheroidal Single-Component Plasmas

by

Mark David Tinkle

Doctor of Philosophy in Physics
University of California, San Diego, 1994

Professor Clifford M. Surko, Chair

A quadrupole Penning trap designed to accumulate positron plasmas has
been used to study the global plasma modes of electron plasmas, positron plasmas,
and ion plasmas. The continuously generated ion plasmas reach the Brillouin den-
sity limit and are thus effectively unmagnetized, whereas the electron and positron
plasmas are highly magnetized and well confined. The spheroidal equilibrium ex-
pected in a quadrupole trap applies to both cases, permitting the use of a new cold
fluid theory of the normal modes of the plasmas. The two classes of modes studied
experimentally, axial modes of electron plasmas and azimuthal modes of ion plas-
mas, have frequencies in good agreement with the theory. Anomalous damping of

the axial center-of-mass oscillation is observed in a cylindrical trap, but not in the
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quadrupole trap. For the axial quadrupole mode of electron plasmas, the plasma
temperature causes an increase in the frequency which is accurately reproduced by
numerical plasma simulations, and which appears to be adequately described by
recent work on a warm fluid theory. The use of the electron plasma modes to mon-
itor the size, shape, and temperature of the plasmas is described. This technique is

expected to be an important nondestructive tool for the study of positron plasmas.
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Chapter 1

Introduction

Since the discovery by Penning [1936] that a magnetic field could enhance the current
of an electrical discharge in a low-pressure gas, a wide variety of related devices has
been developed and studied. A minor modification of the electrode geometry used by
Penning yields a device, called a Penning trap, capable of storing charged particles
in a high vacuum for long periods. In most Penning traps, a uniform magnetic field
is aligned with the axis of a set of cylindrically symmetric electrodes, which supply
an electric potential to prevent particles from streaming out of the trap along the
magnetic field lines. Motions perpendicular to the magnetic field are restricted to

circular orbits at the cyclotron frequency.

The early development of the Penning trap concentrated on the confinement
of small numbers of charged particles to be used for precision measurements. For this
purpose, electrodes were designed to produce precise electric quadrupole potentials,
in which single particles execute simple harmonic oscillations at frequencies depen-
dent on their charge and mass. The technology of precision quadrupole traps [ Brown
and Gabrielse, 1986] eventually advanced to the point that measurements made with
these techniques of the charge-to-mass ratios of electrons, positrons [ Dehmelt, 1990],

protons, and antiprotons [Gabrielse et al., 1990] are among the most precise phys-



ical measurements ever made. Single particles have been confined for months, and
their motions observed by the tiny signals produced on the confining electrodes.
Atomic physicists have used quadrupole Penning traps to measure the masses and
energy levels of various ions. Ion mass resolutions of 1 part in 108 are achieved by
commercial mass spectrometers using similar techniques [ Wilkins et al., 1989], and
atomic spectroscopy in an isolated trap environment is of potential use for the next
generation of atomic clocks [Bollinger et al., 1985]. In all of these applications, the
number of trapped particles is kept low to avoid particle interactions.

In 1975, Penning traps began to be used to study pure electron plasmas
[Malmberg and de Grassie, 1975]. It had been understood previously that electron
beams have some of the properties of neutral plasmas, including Debye shielding and
plasma oscillations. In contrast to neutral plasmas, however, it was realized [Malm-
berg and O’Neil, 1977; O’Neil and Driscoll, 1979] that a confined single-component
plasma could be in thermal equilibrium, and that the confinement should be very
good [O’Neil, 1980]. The presence of only a single charge species eliminates some of
the waves and instabilities present in neutral plasmas (e.g., whistler waves and ion-
acoustic waves), but makes only minor alterations in others. As a result of this and
of the quiescent equilibrium states achievable with pure electron plasmas, Landau
damping of plasma waves has been most convincingly demonstrated in pure electron

plasmas [Malmberg and de Grassie, 1975].

The pure electron plasmas studied have typically been long cylinders, to in-
crease the total number of trapped particles and to reduce the importance of end
effects, which are difficult to treat theoretically. Experimental techniques have been
refined to the point that electron columns are routinely created, cut into pieces
axially, moved off axis, and allowed to interact with other columns [Driscoll and

Fine, 1990; Fine et al., 1991; Mitchell et al., 1993]. Images of the plasma density,



obtained either from multiple shots or more recently from a single shot, using a
phosphor screen and CCD camera [Fine et al., 1993; Peurrung and Fajans, 1993],
show quiescent plasmas with nearly uniform density. If the plasma is made unstable
[Fine et al., 1993; Huang and Driscoll, 1994] or allowed to interact with another
column [Mitchell et al., 1993], spiral filaments form and lead to turbulence. Unlike
neutral plasmas, which must be kept hot to avoid recombination, single-component
plasmas can be cooled to cryogenic temperatures. Measurements of the rate of equi-
libration between the temperatures parallel to and perpendicular to the magnetic
field over several orders of magnitude in temperature [Beck et al., 1992] and their
excellent agreement with theoretical calculations [Glinsky and O’Neil, 1991] show
some of the interesting physics that may be explored as a result.

Experiments at the National Institute of Standards and Technology (NIST)
with pure ion plasmas in precision quadrupole traps have begun to combine the two
different fields of Penning trap research. Though the number of particles trapped
in these experiments is still small (~ 10%), laser cooling lowers their temperature
sufficiently to make them plasmas. In some experiments [Bollinger et al., 1994}, the
temperature is so low (T' < 10 mK) that the plasmas become strongly coupled, form-
ing concentric shells. Because a quadrupole trap is used, the plasmas are spheroidal
[Turner, 1987], rather than cylindrical. Remarkably, an exact theory exists [Dubin,
1991] of the normal modes of these plasmas, in the limit of very low temperatures.
Some of the predicted modes have been observed [Heinzen et al., 1991; Bollinger
et al., 1993] at frequencies in very good agreement with the theory.

The experiments described in this thesis were performed with large numbers
of particles (107 to 10%) in an approximately quadrupole trap. Single-component
plasmas of various charge species have been studied in the same trap, including

pure electron, pure ion, and pure positron plasmas. Although the ion plasmas are



qualitatively quite different from the electron and positron plasmas, and a different
set of normal modes is studied, the same theory [Dubin, 1991] has been successfully
applied to both.

The trap was designed to accumulate and store positrons [Wysocki et al.,
1988; Surko et al., 1989; Surko and Murphy, 1990], with the goal of forming and
studying electron-positron plasmas, an effort which is just now beginning [Greaves
et al., 1994]. Another motivation was the proposed use of trapped positrons as
“tagged electrons” for tokamak transport studies [Surko et al., 1986; Murphy, 1987).
Other applications for trapped positrons include the production of high-emittance
positron beams for high-energy physics experiments and the efforts currently under
way to form antihydrogen [Gabrielse et al., 1988]. An early discovery made with
this trap [Surko et al., 1988] was that the cross-sections for annihilation of room-
temperature positrons with some molecules are very high, implying the existence of
previously unsuspected positron-molecule bound states. This phenomenon may be
of importance to astrophysics [Surko et al., 1993] and mass spectrometry [Passner
et al., 1989; Glish et al., 1994] as well as to molecular physics, and its study [Murphy
and Surko, 1991; Tang et al., 1992; Iwata et al., 1993; Iwata et al., 1994] has made
an interesting addition to the plasma physics work done with the trap.

The plasma mode studies reported here were begun with the intention of
developing a nonperturbative diagnostic of the properties of a positron plasma, for
which neither the probes used for neutral plasmas nor the destructive diagnostics
used for electron plasmas are desirable. The same techniques could also be used
to monitor antiproton plasmas [Gabrielse et al., 1986; Holzscheiter, 1993] or as an
adjunct to the usual techniques for electron plasma experiments. The properties
of positron plasmas are the same as those of electron plasmas, except for their

confinement, which is dominated by annihilation on neutral gas molecules in our



trap. Because electrons are more convenient to work with, positrons have not been

used for most of these mode studies.

The electron plasmas (and the positron plasmas) are formed by trapping
particles from a weak beam, using collisions with neutral gas molecules to remove the
required energy. As a result, the plasmas cool to room temperature, but they may
be heated to about 0.5 eV by the application of rf noise. The temperature and the
radial density profile can be measured using standard techniques [Hsu and Hirshfield,
1976; de Grassie and Malmberg, 1977]. The electron plasmas have confinement times
on the order of 10* s, and may eventually be lost by attachment to neutrals, rather
than by radial transport. Several of the normal modes predicted by Dubin [1991]
are observed, though not always at exactly the frequencies predicted by the cold
fluid theory. The discrepancies are mostly the result of the plasma temperature,

and the data are in excellent agreement with numerical simulations of the plasmas

[Tinkle et al., 1994].

To study ion plasmas in the same trap, an electron beam is passed along the
trap axis in the presence of a low-pressure gas. Ions created inside the potential
well of the trap by ionization are confined for times on the order of 1 s. For the
experiments described in this thesis, the beam is left on continuously, producing large
steady-state plasmas at densities near the Brillouin density limit. The standard
diagnostic techniques are difficult to apply to these poorly magnetized plasmas,
but observations of image charges, steady-state ion currents to the electrodes, and
azimuthal plasma modes are all consistent with a simple model of the steady state.
The plasmas are approximately spheroidal, with shapes determined by the strength
of the quadrupole trap potential, and in some cases appear to be surrounded by
a low-density “halo” plasma. The frequencies of the azimuthal modes agree very

well with the cold fluid theory and the steady state model, except when a halo is



believed to be present.

This thesis is organized in the following manner. Chapter 2 describes the
theory of single-component plasmas in quadrupole traps. The experimental equip-
ment and techniques used are explained in Ch. 3, except for details specific to the
ion experiments. The results obtained with electron plasmas are presented in Ch. 4
and compared with the cold fluid theory and with numerical simulations. The use of
these results as diagnostics is also described, and data obtained with positron plas-
mas is shown. The experiments with ion plasmas are described in Ch. 5. Chapter 6,

which concludes the thesis, is a brief summary of the present state of knowledge in

this area.



Chapter 2

Theory of Spheroidal Nonneutral
Plasmas

This chapter describes the theory of the equilibrium and normal modes of a plasma in

a quadrupole Penning trap, beginning with a discussion of the motions of individual

particles.
2.1 Equilibrium

The electrodes of an ideal quadrupole Penning trap, shown in Fig. 2.1, are
hyperboloids of revolution with their axis of symmetry (defined as the z axis) aligned
with a uniform magnetic field, B, and sharing the asymptotes p = /22, where p =
\/_:v_2—+_y2 is the cylindrical radius coordinate. Various choices for the hyperboloids

are possible. The standard one is the asymptotically symmetric Penning trap, in

which the electrode surfaces satisfy the equation

1

22 — 5;)2 = +2. (2.1)

The minimum distance from the trap center to either of the two “endcap” electrodes
(described by the plus sign in the above equation) is thus 2o, and the distance to

the “ring” electrode (described by the minus sign) is po = v/22o. If the endcaps and
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Figure 2.1: Cross-section of an ideal quadrupole Penning trap, truncated for conve
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the ring are set to potentials V' and —V/, respectively, the electric potential has the

form

B(p,2) = V(= — 57)/ 2% (2:2)
The choice of po/zo affects the precise anharmonicity tuning required for accurate
particle mass measurements (see Sec. 2.5), but is not very important otherwise.

In the absence of the electric field of the trap, a charged particle would move
freely in the z direction, while executing circular motions in z and y at the cyclotron
frequency, ). = ¢B/mc, where c is the speed of light, and ¢ and m are the charge
and mass of the particle, respectively. A charged particle confined in the trap electric
field follows a more complicated path that is the superposition of three independent
harmonic oscillations. In the z direction, it oscillates about the origin at a frequency

w, = 4/2qV/mz%. Tts motion in the z and y coordinates consists of a rapid circular

cyclotron motion at a frequency

Q 1
Q= ~2—+ 5\/92—-2w§, (2.3)
accompanied by a slower circular drift around the z axis at the magnetron frequency,

Q 1

QM = 7 — 5\/92 - 2003 (24)

These two frequencies are the roots of the equation
w? = 20w(Q. — w). (2.5)

When 2. > Qu and the electric field varies slowly over the radius of the cyclotron
orbits, conditions that are well satisfied in most electron plasma experiments, the
magnetron motion may be thought of as the £ x B drift of the guiding center of
the particle. The amplitudes and phases of the three independent oscillations may

be determined from the initial conditions. Typically, the amplitudes are of more



10

interest than the phases, since they are constants of the motion. In particular, the

radius of the cyclotron motion is

T2 (2.6)

pe = [P2 +r%(é+ QMV}W ,
where p is the radial position and p and pé are the radial and azimuthal components
of the particle velocity. The radius, pg4, of the magnetron drift motion is found from
the same formula by replacing Oy with Q.

The confined particle orbits described above are only possible when w? <
02 /2; for higher values of w,, the particle trajectories in £ and y are combinations

of hyperbolic sine and cosine functions, and the particle will strike the ring electrode

quickly. As a result, V must be kept below a critical value,
V., = B*22q/4mc?, (2.7)

for the trap to work. Conversely, for a particular choice of V and B, only particles
with m/q < B%22/V ¢ will be confined.

The thermal equilibrium of a large number of particles confined in a cylin-
drical Penning trap at a low temperature is a uniform-density cylindrical plasma,

rotating rigidly [O’Neil and Driscoll, 1979]. The rotation frequency, w,, may be

either of the two roots of the equation

w? = 2w, (Qe — wy), (2.8)

where w, = (47g*n/m)!/? is the plasma frequency, and n is the number density of the
plasma. Surprisingly, this equation also applies to the low-temperature equilibria of
plasmas in quadrupole traps, which are uniform-density, rigidly rotating spheroids
[Turner, 1987]. The spheroids are biaxial ellipsoids with rotational symmetry about

the z axis, so they are completely specified by their length, L, along the 2z axis and



11
their radius, rp, at z = 0. The ratio of length to diameter,
a=L/2r,, (2.9)

is referred to as the aspect ratio. In equilibrium, « is related to the plasma density

by the equation [Dubin, 1993]

2
2 __ 2
w, = w, A3’ (2.10)
where
2Q9 [a(a2 — l)'1/2]
As(a) = PR , (2.11)

and @Y is a Legendre function of the second kind (see App. A). As shown in Fig. 2.2,
wyp is a monotonically increasing function of a which approaches its minimum value,
wp = w;, as a — 0. This implies that w, > O, as may be seen from a comparison
of Eq. (2.5) and Eq. (2.8).

As in the cylindrical plasma equilibrium, the radial electric field inside the
plasma is proportional to p, having the form E, = mw?2p/2¢z3. Comparing this with
the radial electric field of the trap, E, = mw?p/2qz%, which led to the condition
w? < Q2/2, it is clear that a similar condition applies to the plasma frequency. Just
as the trap field prevents confinement for V > V,, plasma self-fields limit the density
of trapped particles to the Brillouin density [Brillouin, 1945],

BZ

np=—-——
8rmc?’

(2.12)

at which w? = Q2/2. At this limiting density, the plasma rotation frequency is

w, = /2, and the plasma has the highest aspect ratio available for the specified

values of w, and ..

In a plasma, particles move at nearly constant velocities in the z direction

and reflect from the plasma boundary, rather than undergoing simple harmonic
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oscillation. There is a distribution of axial bounce periods determined from the
plasma temperature, as in cylindrical plasmas, and from the particle radius. The
motions in = and y are similar to those described above for single trapped particles,
with the simple change w, — w, in Eq. (2.3), Eq. (2.4), and Eq. (2.6), except that
motions in the plasma boundary are more complicated. As the Brillouin limit is
approached (w, — €.//2), the orbit size of the plasma particles diverges, just
as the orbit size of single trapped particles diverges when the confinement limit is
approached (w, — 0./+/2). In this case, however, particles may remain confined in
the trap as long as the plasma boundary is well separated from the electrode surfaces,
because their orbit radius becomes finite once they leave the plasma. In the limit
of high magnetic field or low temperature, the particle motions in a plasma at the
Brillouin density limit are straight-line trajectories followed by specular reflections

from the plasma boundary, when viewed in a frame rotating with the plasma.

2.2 Plasma Oscillations

The dispersion relation for the normal modes of these nonneutral plasma
spheroids has been derived in the cold fluid limit by D. H. E. Dubin [1991], using
spheroidal coordinates and a clever frequency-dependent coordinate transformation
to match solutions for the potential perturbation, §®, at the plasma surface. This
is the first analytical theory to treat the boundary conditions of a finite plasma
exactly.

To understand the structure of the normal modes described by the the-
ory requires some discussion of the coordinate systems used. Qutside the plasma,
spheroidal coordinates (&1, 2, #) are used. The azimuthal angle, ¢, is the same as in

cylindrical coordinates, and §; and £, are related to cylindrical coordinates by the
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equations
p = (& -d)(1 -2, (2.13)
z = 6162. (214)

With the parameter d chosen as d> = (L/2)? — r2, the plasma surface is described

by & = L/2. The solutions to Laplace’s equation can be expanded in terms of the

associated Legendre functions as

00 l
6®0(£17€2’¢7t) = Z Z 6 ?,m(€1,€23¢at)» (215)
=1 m=-!
607, (61,62, 6,1) = AimQP(&1/ )P ()M, (2.16)

where the A;,, are constant coefficients.

Inside the plasma, a different set of spheroidal coordinates, (¢;,&;, ¢), is used

in which the relation to the z coordinate is altered:

p = [(&-D)A-8)7, (2.17)
z = (eaf/e)?6y, (2.18)
where
_ L 261
4’ = (5) o re. (2.19)

The quantities €; and €3 are elements of the dielectric tensor appropriate to a single-

component plasma in a uniform magnetic field,

€1 —i€2 0
€=|i; ¢ 0 |, (2.20)
0 0 €3

and are related to the plasma parameters as follows:

a = 1-wl/(w—0d), (2.21)



14
e = Qwl/lww?-02), (2.22)
e = 1—wfw? (2.23)

where 0, = Q. — 2w,. In this coordinate system, the surface of the plasma is

described by £; = (€;/€3)'/2L/2, and Poisson’s equation is transformed into Laplace’s

equation. As a result, the perturbed potential inside the plasma may be written as

S 1
6(I)i(€1,§_2,¢,t) = Z Z 6<I)il,m(£l7g2’¢7t)7 (224)
=1 m=-1
89 m(b1,62,6,t) = BBl (& /)Pl (&)e’ ™. (2.25)

Matching §®} . and 6®f,, at the surface leads to the dispersion relation

€3 + ma <a2 — 6_3)1/2 PIm(kl) — (a2 — 63/€1>1/2 le(kl)Q}n ,(kz)
3 o) BPk) -\ @t-1 ) PPR)QP(k:)’

where ky = a/(a? —e3/€1)/?, ky = a(a® —1)71/2, and the primes indicate derivatives

(2.26)

taken with respect to the entire argument.

For strongly magnetized plasmas, in which €, > w, and Q, > w,, the

dispersion relation for low-frequency eigenmodes with azimuthal symmetry (i.e.,

m = 0) reduces to

_ﬁz(ﬁ—bwwwyﬂmmmwb> 227
w? a? —1 P{(k1)QP(k2) '

and k; simplifies to k; = a(a? — 1 4+ w?/w?)7!/2. The normal mode frequencies
are functions of « only, as shown in Fig. 2.2 for several of the lowest-order modes.
The spatial structure of the modes is indicated in Fig. 2.3. Appendix B includes a

discussion of the solution of Eq. (2.27). Explicit formulae for the Q* functions are

given in Appendix A. Chapter 4 presents a study of this class of modes in electron

plasmas.
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Figure 2.2: Axisymmetric modes (m = 0) of highly magnetized, cold, spheroidal
plasmas: frequency as a function of aspect ratio for several low-order modes, scaled
by w,. Multiple modes exist for each { > 3. The dashed line is the plasma frequency.
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Figure 2.3: Structure of azimuthally symmetric (m = 0) normal modes of a highly
magnetized plasma. Arrows indicate fluid motion during one phase of oscillation of
the mode. For | > 3, multiple roots exist to Eq. (2.27), corresponding to modes with
different radial structure, as shown. Purely axial modes have the highest frequencies.
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Another set of modes of particular interest are the purely azimuthal modes,

for which [ = |m|. For positive m, they have frequencies

Q. 1

wn = (m = Dr + = £ 5 (% = 20) + 202G ()] 2 (2.28)
The geometrical factors,
m1 -1
Gm(a) =2 |m— QO (k) (2.29)

a(o? —1)12Qn(k2)|
are plotted in Fig. 2.4 for m = 1 — 5. The plus and minus signs in Eq. (2.28) give
solutions w} and w;, corresponding to the cyclotron and diocotron branches of the

dispersion relation, respectively. The plasma rotation frequency may be found from

wi and wy, for any m > 1:

o = wh 4w, — Q.
2m — 2

(2.30)

These azimuthal “flute” modes are very similar to the analogous modes in
a cylindrical single-component plasma. In the cylindrical case [Davidson, 1990], it
is possible to include the effects of the image charge of the plasma. The mode
frequencies again satisfy Eq. (2.28), with geometrical factors now depending on the
ratio of the plasma radius, r,, to ry, the radius of the cylindrical wall, according to
the relation Gy (rp) = 1—(rp/ry)*™. If image charges are neglected in the cylindrical
case by letting r,, — oo, the geometrical factors reduce to G,»(r,) = 1, and the mode

frequencies match those of the @ — oo limit of the spheroidal case, which did not

include image charge effects.

2.3 Thermal Effects

The cold fluid equilibrium described above is valid if the Debye shielding
length, Ap = (kpT/47nq?)'/?, is much smaller than the size of the plasma, i.e., \p <

L,r,. Here T is the plasma temperature and kg is the Boltzmann constant. In this
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Figure 2.4: The functions Gy, () from the azimuthal mode theory [Eq. (2.29)]. Solid
line: m = 1; dotted line: m = 5.



19

case, the thermal equilibrium deviates from a uniform-density spheroid only at the
edge, where the density falls to zero in a distance of a few Debye lengths. The plasma
pressure causes the equilibrium spheroid to elongate slightly along the magnetic field.
In the opposite limit, A\p > L,r,, the particle interactions are negligible compared
to their thermal energy and the trap potential, and their distribution in 2 is a
Gaussian, with < 22 >= kgT/muw?.

The cold fluid mode theory also requires \p < L,r,, but in addition, Ap
must be much smaller than the wavelength, A, of the mode being considered. If this
is not the case, the frequency of compressional plasma modes would be expected to
increase due to the plasma pressure, and Landau damping will become important.
As a result, even “cool” plasmas will show only a finite number of modes, and the
most robust will be the lowest-order modes, which have the longest wavelengths. It
is possible to estimate the effects of plasma temperature on the mode frequencies
to first order in T [Dubin, 1993; Dubin and Schiffer, 1994], as described in Sec. 4.3.
A warm fluid theory in which a pressure term is added to the fluid equation of
motion is quite successful for low enough T', but is confounded by the occurrence of
nonphysical acoustic modes for higher temperatures [Spencer, 1994].

Three of the global modes in the cold fluid theory are not truly plasma modes,
but merely motions of the plasma center of mass. These motions, the axial bounce,
cyclotron, and magnetron modes, should have frequencies independent of the plasma

size, shape, and temperature in a perfect quadrupole trap, as long as image charges

may be neglected.
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2.4 Image Charges

Because the plasmas studied are not always small in either total charge or
spatial scale (the ion plasmas extend to touch the electrodes), the effects of the
charges drawn onto the electrodes to maintain constant potentials in the presence
of the plasma (referred to as the plasma “image charge”) are not always negligible.
The attractive interaction between the plasma and its image charge modifies the
effective trap potential from that of a perfect quadrupole, making the equilibrium
non-spheroidal and complicating the prediction of mode frequencies. For a small
plasma, however, the dominant effect of the image charge is to change the strength
of the quadrupole potential to an extent proportional to the plasma charge, with a
constant of proportionality dependent on the geometry of the trap electrodes.

The following approximate treatment of these effects proceeds from a sug-
gestion by D. H. E. Dubin. The electric potential produced near the electrodes by
a small plasma (i.e., L/2,7, < 2o) of total charge @ in the center of the trap should
be well approximated by the first terms in its multipole expansion, and dominated
by the monopole term, which has the simple form ®,, = @/r. The surface charge
distribution drawn onto the electrodes to maintain their equipotentials must pro-
duce a potential —Q)/r at the electrode surface. If the electrodes formed a spherical
shell, this would be accomplished by a charge distribution which itself had only a
monopole term. For more complex electrodes, the potential produced inside the

trap by the image charge may be expanded as

®y(r,0) = ZB,( )P, cos ), (2.31)

where azimuthal symmetry has been assumed. The unitless coefficients B; are de-
termined by the requirement ®1(r(8),6) = —Q/r(8), where r(8) is the equation of

the electrode surfaces. Near the center of the trap, only the lowest-order terms are



21

important. The monopole term (! = 0) represents an unimportant shift in the zero
of the potential. For electrodes that are symmetric about 2 = 0, the coefficients
vanish for odd values of /, so there is no dipole term. The quadrupole term (I = 2)

changes the trap quadrupole field from one described by the frequency w, to one

described by w}, where

2 _ @BZ_

*\2 __
(w) —wz ng

z

(2.32)
The spheroidal equilibrium and normal mode frequencies will be altered accordingly.

For the special case of the center-of-mass mode, the assumption that odd-I
coefficients vanish is not valid, because the plasma has a time-varying dipole mo-
ment. A treatment similar to that just described for the quadrupole image charge
field induced by the monopole moment of the plasma may be used to calculate B,
and higher coefficients. When the force on the plasma due to this time-dependent
induced dipole is calculated, it is found to have the same effect on the center-of-
mass motion as is produced by the static quadrupole field induced by the plasma

monopole moment, resulting in harmonic oscillation at a frequency weom given by

2 2 29Q

WoM =W, — —=
CM z ng

(By + By). (2.33)

Plasmas that are not much smaller than the trap may still have only minor
effects from image charge, but the coefficients (possibly even their sign) will depend
on the plasma length and radius, as well as the total charge [Turner, 1987]. A

numerical Poisson solution would be required to determine the image charge field

for a particular plasma.

2.5 Anharmonicity

Deviations of the trap potential from a perfect quadrupole will affect the

plasma equilibrium and the mode frequencies. The precision of a particular set of
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electrodes is customarily [Brown and Gabrielse, 1986] described in terms of unitless
coeflicients in an expansion of the potential about the center of the trap:
1 = r\'

®(p,z) = V(z* - 5,,2) /22 + v; C (;;> Py(cos 6). (2.34)
In an ideal trap, all of the C; coeflicients are zero, and in practice, all of the odd-
[ coefficients are usually assumed to be negligible due to symmetry about z = 0
maintained during the construction of the electrodes. The coefficient Cy represents
an unintentional (and unimportant) DC offset to the potential, and C, describes
a deviation of w, from its design value. Cj, the coefficient of the quartic term, is
a measure of the trap imperfection, or anharmonicity. Precision traps have com-
pensation electrodes in the asymptotic region of the trap which make it possible
to approximately zero Cy. The optimum configuration for this purpose is one that
produces no change in C; as Cy is adjusted, which is obtained for pp ~ 1.162 [Brown
and Gabrielse, 1986]. The asymptotically symmetric design approximated by our
trap (po = \/ﬁzo) is not the optimum, but has nevertheless been used for most
precision trap experiments.

C4 is a useful figure of merit for a trap, but does not sufficiently describe a trap
if large plasmas are to be studied. A set of carefully chosen cylindrical electrodes can
be made to null both C4 and Cs coeflicients in the potential [Gabrielse et al., 1989],
but will nonetheless deviate greatly from a quadrupole field near the electrodes,
which do not lie along equipotentials of such a field. For large plasmas, or when
large-amplitude motions of single trapped particles are expected, the hyperboloidal

geometry shown in Fig. 2.1 may be preferable.

It is possible [ Dubin, 1994] to estimate the effect of a small trap anharmonicity
on the mode frequencies. One important effect of a substantial anharmonicity is that

the plasma center-of-mass mode frequency becomes dependent on the size and shape



of the plasma.
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Chapter 3

Description of the Experiment

This chapter describes the experimental apparatus used to form and confine single-
component plasmas of various species and explains the methods employed to mea-
sure the equilibrium properties and normal mode frequencies of the plasmas. Tech-

niques specific to the ion plasmas are described in Ch. 5.

3.1 Plasma Formation

The equipment used for these experiments can form single-component plas-
mas of positrons, electrons, or ions, which may be confined in a cylindrical electrode

structure or in a set of hyperboloidal electrodes.

3.1.1 Positron Source and Trapping

Because it was designed to trap positrons by gas scattering [ Wysocki et al.,
1988; Surko et al., 1989; Murphy and Surko, 1992], the Penning trap used for these
experiments has a rather complicated electrode structure, as shown in Fig. 3.1. The
cylindrical electrodes have inner diameters that increase by a factor of 23.8 from
the front of the trap, where positrons enter, to the back, where they are eventually

confined. Vacuum pumps at both ends and in the middle of the trap combine with

24
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Figure 3.1: The positron trap.
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this structure to provide differential pumping of a buffer gas, typically N5, introduced
into one of the narrow electrodes, producing the pressure variation indicated in
Fig. 3.2. The electrodes are biased to provide the potential shown in Fig. 3.2 along
the axis of the trap. Guided by the strong axial magnetic field, positrons enter the
trap with an energy of about 32 eV and, if a collision with a gas molecule does not
occur, they will reflect from the potential barrier at the far end of the trap and return
to their source. Though elastic collisions could provide temporary confinement by
scattering Ej (kinetic energy parallel to B) into E, (kinetic energy perpendicular
to B), energy lost in inelastic collisions provides the dominant trapping mechanism
[Murphy and Surko, 1992]. The buffer gas pressure is such that, on average, a
particle undergoes one such collision, most likely in Stage I, during a pass through
the trap. The positron beam energy and the electrode potentials are adjusted to
maximize the cross-section for the desired inelastic process (an electronic excitation),
while minimizing the cross-section for the formation of positronium, which results in
loss of the positron. After the initial collision resulting in confinement, the positron
bounces back and forth in the trap, losing energy by additional collisions, until
it is eventually restricted to Stage III, where vibrational and rotational collisions
gradually reduce its energy to room temperature, the temperature of the buffer gas.
Computer optimization of the electrode potentials has raised the efficiency of this
trapping process to about 40%.

The positrons are produced by a radioactive source, a thin film 6 mm in
diameter containing about 70 mCi of ?2Na, covered by a 0.1-um-thick titanium
window. ??Na decays to 2?Ne with a radioactive half-life of 2.60 years, producing a
1.275 MeV y-ray accompanied, 89.8% of the time, by a positron, which may have
any energy up to 546 keV. To shield the v-rays, the source is centered in a thick

cylinder of HeavyMet (a machinable alloy of 90% tungsten and 10% copper) inside a
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Figure 3.2: Potential along the axis of the positron trap, with a schematic of the

electrodes. Roman numerals label the different “stages” of the trap, which have the
neutral gas pressures indicated.
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vacuum chamber which is surrounded by a 4-inch thickness of lead bricks. Because
of the broad energy range of the positrons and the continuous and isotropic nature of
their emission, no efficient technique of directly trapping the high-energy positrons
is known. Instead, a 1-pm-thick single-crystal tungsten foil is placed in front of the
source to act as a moderator [Gramsch et al., 1987; Zafar et al., 1988]. A small
fraction of the positrons striking the moderator slow down and thermalize near
enough to the front surface of the foil to have a chance of diffusing to the surface
before annihilating. Because the work function for positrons in tungsten is about
—2 eV, these positrons are emitted from the moderator with an energy about 2 eV
higher than the moderator bias potential, which may be varied. The efficiency of
the moderator, defined as the ratio of slow positrons produced per positron emitted
by the source, is subject to a number of poorly understood effects, but with proper
heat treatment in the presence of a low pressure of oxygen, it is typically 0.01 -
0.02%. About half the positrons produced strike the moderator, resulting in a beam
strength of about 6 x 105 low-energy positrons per second, and a production of 3 x 10°
trapped positrons per second. We have recently installed a new type of moderator
consisting of a film of solid neon frozen onto the source window and a surrounding
paraboloidal copper cone [Mills and Gullikson, 1986; Khatri et al., 1990]. This is
effected by mounting the source assembly onto the cold head of a 2-stage cryogenic
refrigerator. The neon moderator has a considerably higher efficiency than the
tungsten moderator, and has so far produced 2 x 108 trapped positrons per second
[Surko and Greaves, 1994].

Trapped positrons are eventually lost due to annihilation with electrons in
neutral gas molecules, resulting in a mean positron “lifetime”, 7,, and an annihi-
lation rate of 1/7, per positron. The maximum number of positrons that may be

accumulated is the product of the trapping rate and the positron lifetime. During
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the initial experiments with the positron trap [Surko et al., 1988; Wuysock: et al.,
1988], it was discovered that the positron lifetime was limited not by annihilation on
the buffer gas molecules, but by annihilation on the traces of hydrocarbon molecules
present at the base pressure of the vacuum system. The vacuum chamber is sealed
in key places by rubber o-rings, which limit the temperature to which it may be
safely baked and are also a potential source of hydrocarbons. Substantial improve-
ments were obtained by replacing the original diffusion pumps by turbopumps and
then by cryopumps, and by regreasing the accessible o-rings with a flourocarbon
compound (Fomblin) with a very low vapor pressure. Still, the positron lifetime
was dominated by constituents of the system base pressure (about 2 x 10~° torr)
and fluctuated from day to day, with a typical value of 7, ~ 20 s. This problem
was finally solved by positioning an annular dewar filled with liquid nitrogen near
the confinement region to reduce the partial pressure of condensable gases. This
is so effective that if the buffer gas flow is shut off after loading Stage IV of the
trap with positrons, the positron lifetime increases to about 1500 s (see Fig. 3.3(b)).
During normal operation, annihilation on the buffer gas results in a lifetime during
trapping of 7, = 60 s, about what had originally been expected. Figure 3.3(a) shows
the number of positrons stored as a function of time since the start of trapping, and
then the exponential decay of the number stored after the beam is shut off at the
time indicated. The self-field of the plasma is sufficient to change the trapping effi-
ciency as the plasma accumulates, resulting in a filling timescale somewhat longer
than the annihilation time, 7,. This dataset is typical of results obtained with the

new neon moderator, showing a maximum number of 10® positrons.
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Figure 3.3: (a) Filling and storage of positrons in Stage III, with B = 1.2 kG. (b)
Confinement of positrons and electrons in Stage IV, with B = 1.5 kG: (e): positrons,
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3.1.2 Electron Source

If the sign of all of the electrode potentials used for positron trapping is
reversed, electrons can be trapped, though not at the highest possible efficiency. It
was found that the positron moderator emits a substantial number of electrons, so
that a separate source, such as the spiral filaments used in most electron plasma
experiments [Malmberg and de Grassie, 1975; Driscoll and Malmberg, 1976], was not
necessary. The electrons, which are probably secondary electrons produced by the
high-energy positrons streaming through the moderator, have a broad energy range
up to 60 eV or more, and for long-time confinement studies it is necessary to shut off
the solenoid between the source and the trap, in addition to biasing the moderator,
to completely shut off the beam. The trapping rate can be adjusted to be comparable
to the positron filling rate, or increased to be about an order of magnitude higher.
The confinement of electrons is very good, as indicated in Fig. 3.3(b), where an
exponential loss time of 3 hours is seen when the buffer gas is pumped out. This
time appears to depend on the condition of the vacuum, and does not appear to
follow the B?/L? scaling law observed by Driscoll [Driscoll and Malmberg, 1983],
suggesting that the losses are dominated by a process other than field-error-driven
transport. Because there are no annihilation losses, and the confinement time is
high, the limit to the number of stored electrons appears to result from the plasma

space charge, which can become comparable to the confinement potentials.
3.1.3 Ion Source

Although the electron plasmas studied in this work were formed using sec-
ondary electrons from the moderator, an electron gun has been built recently for

use in electron beam - positron plasma experiments. This gun is used to create the
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ion plasmas we have studied, by ionizing gas atoms. The trap potentials are set
to confine ions, many of which are created in the confinement region and thus do

not need to lose energy to become trapped. Further details on this technique are

provided in Ch. 5.

3.2 Hyperboloidal Electrodes

The early electron plasma experiments in this machine were performed with
plasmas confined in the original cylindrical electrode structure. The unitless anhar-
monicity parameter for this structure, defined by analogy to Eq. (2.34) but with the
cylinder radius, r,, replacing zo as the distance scale, is Cy ~ 0.482. Because of evi-
dence, described in Sec. 4.1, that the anharmonicity was affecting the plasma mode
frequencies and impeding the remote detection of positrons, a new electrode struc-
ture, shown in Fig. 3.4, was designed to approximate the truncated hyperboloidal
electrodes of a precision quadrupole trap. There are no compensation electrodes in
the asymptotic region, and the electrodes are truncated in the simple fashion shown.
To reduce the effect on the differential pumping caused by an obstruction, most of
the surface of the endcaps consists of a mesh with about 66% transmission. The
holes required on the axis of the endcaps for particle entry have the same diameter
(4.32 cm) as the inner diameter of the electrodes of Stage II of the trap, to avoid
introducing a new positron loss mechanism. Numerical calculations with a Laplace
solver indicated that with such large holes, there was no advantage in making the
remainder of the endcaps precisely hyperboloidal, so a conical approximation was
made to the desired surface. This made the task of forming and attaching the
mesh to the machined frame of the endcaps much simpler. The ring electrode, a
hyperboloid truncated by a cylinder, was machined using a computer-numerically-

controlled (CNC) lathe. A CNC milling machine was used to machine tabs on the
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Figure 3.4: Approximate quadrupole trap electrodes, with a typical plasma shown.
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endcaps and on the cylindrical portion of the ring electrode, for electrical connections
and to attach them together. |

The electrodes were made of aluminum for economy and ease of machining,
then plated with gold on silver on copper. This plating cannot be safely baked to
temperatures greater than 120°C, due to concerns about the strength of the copper-
aluminum bond, but it is much less expensive than the gold on palladium plating and
copper electrodes required for a high-temperature bake. The plating was not a limi-
tation in our experiment, as we are not able to bake our o-ring sealed vacuum system
to temperatures above 70°C. The same plating was applied to the aluminum mesh,
which was attached to the endcap frame by gold-plated brass screws. Beryllium-
copper screws were used to assemble the electrodes, with Macor washers providing
electrical isolation between the parts. The cabling to the electrodes is 509 semi-rigid
coaxial cable with a solid copper jacket and Teflon dielectric. While this cable is
not designed for vacuum applications, it does not noticeably affect the system base
pressure.

The electrodes are designed to approximate an asymptotically symmetric
quadrupole trap [see Eq. (2.1)] with z = 6.3 cm. The anharmonicity coefficient
for this structure is nominally Cy ~ 0.055, but is influenced by external potentials
because of the large holes in the endcaps. Figure 3.5(a) shows the calculated axial
bounce frequency as a function of radius for a single particle in the trap, showing
a substantial improvement over the cylindrical structure. Another result of anhar-
monicity is the variation of the bounce frequency with bounce amplitude, shown in
Fig. 3.5(b). A better comparison of the two traps is obtained if both values of Cy are
defined by the same distance scale. Using 2o as the scale, the results are Cy ~ 0.24
for the cylindrical trap, compared to 0.055 for the quadrupole trap. The relatively

modest reduction in the anharmonicity resulted in large qualitative improvements in
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the data, which will be described in Ch. 4. In addition, the new electrodes are con-
siderably closer to the plasmas, resulting in a great improvement in signal coupling
between them.

To allow the observation of plasma modes with azimuthal variation and to
enable us to measure the mass of ions produced by positron annihilation [Passner
et al., 1989; Glish et al., 1994] using ion cyclotron mass spectrometry, the ring
electrode was recently replaced by an azimuthally sectored structure. The surfaces
of the new structure are the same as before, but the cylindrical part of the electrode
is now a separate piece, to which the original endcaps are attached, as before. The
hyperboloidal surface was machined separately using a CNC lathe and cut into 8
azimuthal sectors by electrical discharge machining (EDM). Each sector is attached
to the cylinder by a pair of titanium screws insulated from the cylinder by Macor
washers. The sectors are isolated from the cylinder by a sheet of Teflon 0.005 inches
thick, and separated from each other by about 0.020 inches, the amount of material
removed by the cutting process. The sectors were aligned manually, since it was
felt that the imperfections of the endcap mesh made a more painstaking procedure
pointless. Semi-rigid coaxial cables are guided around the outside of the cylinder

by Teflon supports and connected to the titanium screws to make electrical contact

with each sector.
3.3 Density Measurement

The radial distribution of charge stored in the trap can be measured by re-
ducing the voltage on one of the confining electrodes, causing the trapped electrons
or positrons to stream out of the confinement region along the magnetic field lines.
The “dumped” charge strikes the set of 11 concentric annular collector plates indi-

cated in Fig. 3.1 and shown in more detail in Fig. 3.6. The charge accumulated by a



Figure 3.6: Collector plate array.
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ring can be measured using a charge-sensitive amplifier, which has a noise level cor-
responding to about 10* electrons. The amplifier is a Canberra Model 2002 preamp
(ordinarily used with Germanium gamma-ray detectors), followed by a standard
spectroscopy amplifier with a 1-us shaping time. The amplifier gains are typically
adjusted to give an overall sensitivity of 1 volt per 106 electrons. A switch box is
used to select the collector. The collector array is located outside the main solenoid,
so the spreading field lines give a view of the plasma magnified by \/E,/—B: ~ 1.76,
where B, is the magnetic field at the collectors. This results in a spatial resolution at
the plasma of 0.27 cm for the inner 8 collectors. Nominally, these are the collectors
that map to the hole in the endcap through which the charge is dumped, while col-
lector 9 should be completely obstructed by a central ring structure on the endcap
and collectors 10 and 11, which are much larger, receive charge dumped through the
endcap mesh. It appears that collector 8 is partly obstructed and collector 9 receives
some charge, so that the magnetic field ratio used for the design and field mapping
may be slightly in error. Collector 5 is split azimuthally into 4 sectors. The Macor
block on which the collector array is mounted can be centered on the magnetic axis
of the trap by positioning it so that equal charge is dumped onto each of these sec-
tors. This technique is most accurate if the plasma used has a radius comparable to
the average radius mapped by collector 5. The collectors are gold-plated aluminum
(the same plating as was used for the hyperboloidal electrodes) machined to overlap
so that all charge within the outer radius of the array is collected, avoiding charging
of the support block.

Dividing the charge measured on a collector by the area to which it maps
gives an estimate of the z-integrated plasma density, ¢,, at the average radius to
which the collector maps. Figure 3.7 is an example of density measurement data,

showing the radial profile of an electron plasma relaxing from an initial peaked dis-
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tribution to a more uniform profile. The neutral gas pressure is substantial (about
1078 torr), so some overall expansion occurs as well. To infer plasma density from
these z-integrated profiles requires a numerical calculation in which Poisson’s equa-
tion, V2®(p,z) = —4wqn(p,2), is solved with the proper electrode geometry and
potentials. It is assumed that the plasma is in local thermal equilibrium along each

magnetic field line and that there is no azimuthal variation, so that the density at

each radius has a Boltzmann distribution

n(p, z) = ¢:(p)C(p, T)e 1)/ kT (3.1)

where ® is the total potential, including the self-consistent field of the plasma.
C(p,T) is a normalization constant associated with the Boltzmann factor, and ¢.(p)
is the z-integral of n(p, z), the data input to the program. In principle, the plasma
temperature, T, could be a function of p, as might occur if rapid radial transport
leads to Joule heating, but we always assume a uniform temperature, which is
usually 300K. The computer program makes a guess of the total potential and
distributes the known number of particles at each radius according to this potential
using Eq. (3.1). It then solves Poisson’s equation to find a new estimate for ®, and
iterates the procedure until adequate convergence is achieved. This algorithm is
subject to various convergence problems, but works reasonably well as long as the
Debye length of the actual equilibrium is much larger than the grid spacing used in
the calculation.

Because the plasmas are nominally spheroidal, an approximate analysis of
radial profile data can be made without resorting to the Poisson solver. The central
value measured for ¢,(p) is approximately the product of the plasma length and its

central density, nmax:

do = anax- (32)
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Figure 3.7: Radial density profiles of plasma relaxing toward thermal equilibrium.
Data were taken at times 0, 10, 20, 40, 60, and 80 seconds after filling, with early
times corresponding to higher central density. The smooth curves are a guide.



41

N is known from the total charge measured, and assuming a uniform-density spheroid

leads to an estimate, 7, of the plasma radius:

) AN\ 172
rp—(zwq()) . (3.3)

Using the equilibrium equation, we can find an equation for the aspect ratio in terms

of measured quantities:

20 9o
= 4
Ag(a) 2f‘pn0, (3 )
where
1%
°7 2rqz2 (35)

can be considered as a characteristic particle density associated with the trap field
(w? = 47nog?/m). Then L and npax are easily found from these quantities. Other
definitions of the radius of a plasma with a nonuniform density, such as the mean
square radius or the radius at which the density is half its maximum value, may
be more appropriate for some purposes. This approach compares well with Poisson
solutions for the equilibrium parameters.

The density diagnostic is not useful for the ion plasmas we have studied be-
cause they have densities near the Brillouin limit. As a result, the ions are effectively
unmagnetized in a frame rotating with the plasma, so they do not follow magnetic
field lines to the collectors when dumped. An additional problem is the large size of
the plasmas studied, many of which extend out to the ring electrode. The techniques

developed to determine the ion plasma density are described in Ch. 5.

3.4 Temperature Measurement and Heating

We use the standard “magnetic beach” technique to measure the temperature
of the electron and positron plasmas [Hsu and Hirshfield, 1976]. A small water-

cooled coil is positioned behind the collector array, as shown in Fig. 3.1, and its
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current is adjusted to make the total magnetic field at the collectors equal to the field
in the confinement region. A series of nominally identical plasmas are formed and
dumped with varying potential biases on the collectors, and the total charge received
is recorded. In principle, this curve contains information on the velocity distribution
of the plasma and can be used to deduce the plasma temperature [Eggleston et al.,
1992], but this is complicated by the plasma potential. Instead, the field at the
collectors is increased to produce a magnetic mirror, and the data set is retaken.
To first order, the effect of the mirror field is to shift the curve, because a lower
collector bias is capable of reflecting the particles with the assistance of the mirror.
The slopes of the two curves at their midpoints are used to estimate N/9V, and the
separation between the curves gives an estimate of IN/OR, where R is the mirror

ratio. The temperature is the ratio of these quantities,

ON/OR

ksT = q——aN/a%.

(3.6)

The data shown in Fig. 3.8 are for two different temperatures: kg7 = 0.3 eV
(Fig.3.8(a)), and kgT = 0.025 eV (Fig.3.8(b)). The mirror field for these datasets
was provided by moving a permanent magnet into the position now occupied by the
mirror coil. This earlier technique is less accurate than using the mirror coil because
the mirror ratio without the magnet is 0.34 (causing acceleration of particles) and it
increases to about 1.3 with the magnet in place. In either case, the mirror field has
to make up for the loss in the field of the main solenoid. As a result, the temperature
measurements can only be made for B ~ 900 G or less.

Temperature measurements made at varying times after the rapid introduc-
tion of a small number of electrons or positrons into the trap allow the cooling of the
particles by collisions with the buffer gas to be observed. As shown in Fig 3.9(a), the

plasma approaches its final temperature with an exponential cooling time-constant
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eV, and (b): kgT = 0.025 eV. Mirror field provided by permanent magnet: R ~ 1.3
with magnet in place, R ~ 0.34 with magnet out.
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of 7. >~ 0.6 s. We have assumed that this final temperature is the temperature of
the buffer gas, i.e., 300 K, and used this to calibrate the measurement. The result-
ing scale factor of 0.85 probably arises from imperfections in the geometry of this
magnetic beach, principally the variation in the strength of the mirror field over
the surface of the collector array and the location of the collectors outside the main
solenoid.

The plasma may be heated to about 0.5 eV by the application of broadband
rf noise to one of the electrodes. The noise is produced by an unfiltered pseudo-
random noise source with a center frequency of 11 kHz, a peak-to-peak amplitude
of typically 50 mV, and frequency components up to about 10 MHz. The plasma
temperature rises quickly to a maximum, above which we speculate that an inelastic
collision process, such as vibrational excitation of N, molecules, provides strong
enough cooling to stabilize the temperature. After the heating pulse is shut off, the
plasma cools toward room temperature, as shown in Fig. 3.9(b). To study plasmas
of a particular temperature in the range 0.025 < kgT < 0.5 €V, we wait for the

appropriate time after the application of a standard heating pulse.

3.5 Mode Excitation and Detection

Normal modes of the plasma are studied by applying sinusoidal signals to one
electrode and measuring the signals induced on another. Asshown in Figure 3.10(a),
the two endcaps are used for the study of modes with no azimuthal variation. To
study azimuthal modes, the signals are applied and detected on two or more of
the sectors of the ring electrode, as shown in Fig. 5.1. A spectrum analyzer with
a tracking generator is used to sweep the excitation frequency to find resonances.
Typical mode frequencies are 3 MHz for the axial modes of electron plasmas and

30 kHz for the azimuthal modes of ion plasmas. Consequently, different spectrum
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Figure 3.9: (a) Temperature as a function of time after particle trapping. (b) Plasma
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during heating, showing saturation at kgT ~ 0.5 eV.
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Figure 3.10: Electronics used for mode excitation and detection of axial modes of
electron plasmas.
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analyzer and tracking generator models are used for the two different experiments.



Chapter 4

Electron Plasmas

Plasma experiments in the positron trap began with the simple goal of remote de-
tection and monitoring of trapped positrons in the original three-stage trap. This
turned out to be surprisingly difficult because of the small numbers of positrons
then available (3 x 10°), various signal coupling problems, and an unexpected phys-
ical effect eventually ascribed to the anharmonic nature of the trap potential. In
addition, the normal modes of large electron plasmas, though easily excited and
detected, could not be accurately compared with theories for either cylindrical or
spheroidal plasmas. This led to the design of the hyperboloidal electrode structure
described in Sec. 3.2 and a substantial improvement in the data. Small numbers
of positrons (about 10* or more) could be detected by exciting and detecting an
oscillation of their center of mass about the center of the trap. The electron plasma
mode frequencies were found to be much more stable, but were still not in quanti-
tative agreement with the cold fluid theory for spheroidal plasmas [Eq. (2.27) and
Fig. 2.2]. The discrepancy was discovered to be mainly the result of the finite plasma
temperature. This effect has been studied in detail for the lowest order axial plasma

mode, the quadrupole mode.

This chapter describes the electron plasma work, which was completed before

48
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the construction of the azimuthally sectored electrodes used for the ion plasma ex-
periments described in Ch. 5. It is anticipated that azimuthal modes in electron and
positron plasmas will be of interest and eventual diagnostic use, but they have not
yet been studied. In Sec. 4.1, the work in the original cylindrical trap is described.
The remaining sections discuss the results obtained in the quadrupole trap (the hy-
perboloidal electrode structure), including a discussion of their use as diagnostics of

plasma parameters and examples of recent data obtained with positron plasmas.

4.1 Cylindrical Trap

4.1.1 Electrostatics

As shown in Fig. 4.1, the electrodes of the third stage of the positron trap
consist of three cylinders and a flat disk-shaped electrode with a hole in the center
for particle access. The end cylinder is set to a potential V;, the disk electrode is
set to V,, and the middle two cylinders are grounded. The plasmas studied are
contained well within the long cylinder, so that the hole in the disk and the details
of the geometry beyond the second short cylinder are not important. As a result,
the basic features of the electrostatics of the trap can be determined analytically
from the Green’s function for a closed cylinder [Jackson, 1975] by placing a fictitious
disk at the far end of the second short cylinder. Useful results that can be obtained
include the location of the potential minimum and the expansion of the potential
about the minimum [as in Eq. (2.34)], as functions of the potentials on the disk
electrode and the short cylinders with respect to the long cylinder. The results are

in good agreement with more laborious numerical solutions to Laplace’s equation.

A simpler approach that gives very similar results uses only the dominant

terms of the expansion for the trap potential obtained from the Green’s function.
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Figure 4.1: Electrodes of the third stage of the positron trap.

50



51

This gives the form

O(p,2) ~ Jo(zorp/Tw) (Vlcle'”’mz/“" + %cze“‘z/r“’) , (4.1)

where Jp is a Bessel function, zog; ~ 2.4048 is the first zero of Jo(z), and ¢; and ¢,
are constants. The exponentials are approximations to the hyperbolic sine functions
present in the Green’s function. Considering the potential along the axis (p = 0),
we can easily find the position of the minimum,

To1Tw

2

~Y
c —

In(e1Vi/e2V2), (4.2)

and the power series expansion of ®(0, z) about the minimum, which is recognized

as a hyperbolic cosine function, giving the result

w

®(p,z) ~ (c102%%)1/2J0(m01p/rw) cosh (x:_lz) . (4.3)

The frequency of small oscillations about 2z, is found to be
1/2 4q? e

o:(p) = Unaunpra)] " (2 cicaiVs) (4.4
Equation (4.3) is a generic form for the potential near a minimum inside a
long cylinder. Different geometries of the end electrodes, different cylinder lengths,
and different choices for the location of z = 0 affect only the coeflicients ¢; and c3,
as long as V] and V;, are not so different that the potential minimum is close to one
end of the cylinder. The insensitivity of z. to V4 and V; indicated by Eq. (4.2) is a
problem if a center-of-mass oscillation is to be excited by oscillating V; and detected
by signals induced on V,. A more physical explanation is that external fields die
out exponentially with distance inside a conducting cylinder, which is the essence
of Eq. (4.1). The anharmonicity of the potential is easily found from the power

series for the hyperbolic cosine. A distance scale must be chosen (for example, in



52

Eq. (2.34), coordinates are scaled by z;), and the natural choice in this geometry is

the radius of the cylinder wall, r,,. This results in
Cy = z2,/12, (4.5)

i.e., C4y ~ 0.482, for any long cylindrical trap. The positive sign of C4 indicates that

the potential well “stiffens” with increasing distance from the minimum.

4.1.2 Center-of-Mass Mode

For clouds of particles in which space charge effects are minor, the parti-
cles will collect about the axial potential minimum, with the radial distribution
with which they are trapped. If their radial distribution is narrow and their tem-
perature is low enough that they stay close to the minimum, the potential is ap-
proximately quadrupole, leading to small-amplitude harmonic oscillations at the
frequency, w,(0), given in Eq. (4.4). A coherent excitation of all the particles pro-
duced by a sinusoidal signal applied to one of the short cylinders should result in the
oscillation of their center of mass at the frequency wem = w,, which will produce a
signal proportional to N on the disk electrode.

This simple result was never observed with the cylindrical electrodes. Instead,
it was found that unexpectedly large numbers of particles were required to produce
a detectable signal (N ~ 107), that this signal occurred at a frequency wom > w,,
and that the amplitude of the signal was a very nonlinear function of N and of other
uncontrolled variables. Figure 4.2 shows a typical dataset. Such large collections of
particles are plasmas and elongate considerably due to their space charge, so it is
reasonable that the signal coupling will improve and that the frequency may rise as

the longer plasmas feel the trap anharmonicity more strongly.

What is surprising is that there is a threshold behavior to the response, such
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Figure 4.2: Dependence of (a) amplitude and (b) frequency of the axial center-of-
mass oscillation on the number of particles in the cylindrical trap.
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that the response detected for (N ~ 107) is relatively strong, but a 20% reduction in
N below this results in a very small signal. A more telling result is that this threshold
may also be crossed by varying the temperature, as demonstrated in Fig. 4.3, where
the response spectrum of 107 electrons is monitored as the plasma cools after a rapid
fill. The response as a function of temperature for this dataset is shown in Fig. 4.4,
which also shows the results for a plasma with half as many particles.

Because such an effect cannot easily be explained in a pure quadrupole poten-
tial, the trap anharmonicity appears to be a contributing factor. The dependences
on T and N (which implies a dependence on n) could both be explained by the
existence of a threshold value of the Debye length. It may be that the typical radial
particle distribution, which is approximately Gaussian with an rms radius of about
1 cm, is wide enough to cause substantial phase-mixing of the signals from particles
at different radii because of the radial variation in w, indicated in Eq. (4.4) and in
Fig. 3.5(a). Even particles at the same radius will have a distribution of bounce
periods due to anharmonicity and the thermal distribution of amplitudes of oscilla-
tion, as shown in Fig. 3.5(b). A charge cloud with sufficient plasma character (i.e.,

one with Ap < Athreshoid) Would tend to move collectively and might avoid these

damping mechanisms.

4.1.3 Plasmas

In spite of the difficulty of detecting small numbers of particles in the cylin-
drical trap, there is no trouble exciting and detecting various normal modes of large
plasmas. A typical response spectrum, shown in Fig. 4.5, presents a family of res-
onances of increasing frequency excited by a sinusoidal signal applied to one of the
confining electrodes (see Fig. 3.10). Density profiles of the plasmas, obtained by

applying the Poisson solution program to charge collector data (as described in



95

—~ | (a)
(/2] H —
= time=8s
> ‘ 6
£ L 4
° | 2|
g I 1.5
= I~ 1
£ — 0.5
© 0.25
0.1
800 900 1000 1100
frequency (kHz)
0.20 .
s (b
> .
QL 015} .
o
=)
® 010 .
o) (0)
£
5 0.05 + .
0.00 1 1 1 1 1 1 1
0 1 2 3 4
time (sec)

Figure 4.3: (a) Center-of-mass response spectra of about 107 electrons in the cylin-

drical trap at varying times after a rapid fill, offset vertically for clarity. (b) Cooling
curve measured under the same conditions.
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Sec. 3.3), appear roughly spheroidal, so an attempt was made to analyze the data
using the spheroidal mode theory [Eq. (2.27) and Fig. 2.2]. A strong response was
expected at the value of w,(0) predicted by Eq. (4.4). As mentioned in the preced-
ing section, the strongest response consistently occurred at a substantially higher
frequency, but by decreasing N it was possible to track the mode frequency close
enough to w,(0) to be confident of its identification as the (I = 1) center-of-mass
oscillation. The higher-frequency series of modes were thus suspected to be the
[ =2,3,4,... axial modes predicted by the theory. Somewhat less confidently, the
two weaker resonances seen at frequencies below w,(0) were suspected to be the
[ =3 and [ = 4 modes with radial structure indicated in Fig. 2.2 and Fig. 2.3.

To test the dependence of the mode frequencies on aspect ratio, two similar
plasmas with different aspect ratios were obtained by filling them under identical
conditions and then reducing B in one case to expand the plasma radially. The fre-
quencies of the most prominent modes observed in each case are plotted in Fig. 4.6.
The value of wom was different for the two plasmas and was not close to w,(0) in
either case, so the mode theory will clearly not be satisfied to any degree of preci-
sion. It was hoped that by scaling the frequencies by the measured values of wcym
rather than by w,(0), we might roughly account for these differences. Frequencies
predicted by the theory for four different aspect ratios are also shown in Fig. 4.6,
connected by lines to distinguish them from the data points. Neither plasma shows
a dependence of mode frequency on mode number, [, that accurately matches the

theory for its measured . Still, the general appearance seems qualitatively correct.
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4.2 Quadrupole Trap

4.2.1 Center-of-Mass Mode

In the quadrupole trap, the nonlinear behavior of the axial center-of-mass
mode seen in the cylindrical trap is absent. When the data from Fig. 4.3 is retaken
in the quadrupole trap, the amplitude and frequency of oscillation appear to be
independent of the plasma temperature, as shown in Fig. 4.7, in strong contrast to
Fig. 4.3. Because of the increased sensitivity, it is possible to track the amplitude
of the response across the range of N over which the transition to a plasma should

occur. As shown in Fig. 4.8, the response is proportional to N for N < 6 x 108 and

no threshold is seen.

The dependence of wey on N can be adjusted to some extent by varying the
quadrupole trap potentials relative to the rest of the trap. With the quadrupole
electrodes located inside the (grounded) dewar, as shown in Fig. 3.1, this involves
adding a fixed potential to the voltage on each electrode. If the quadrupole trap
is placed inside the cylindrical trap, as originally intended, the potentials of the
cylindrical trap may be varied to tune the anharmonicity. Data taken in the latter
fashion are shown in Fig. 4.9, in which curves of wem(N) are taken for various values
of the external potentials. The most obvious features are that it is possible to tune
the anharmonicity to make wcym independent of N for N < 107, but that for much
higher N, wcm rises regardless of the anharmonicity.

The remainder of the data in this chapter were taken with the anharmonicity
adjusted to minimize the variation of wey with N, even though this did not occur
at the expected values of the external potentials. We now believe that rather than

nulling Cy, this procedure adjusted it to balance the initial effect of the increasing

image charge.
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Cooling curve measured under the same conditions.
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Figure 4.8: Amplitude of center-of-mass response in quadrupole trap as a function

of N.
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4.2.2 Plasmas

Axial plasma modes are easily excited and detected in the quadrupole trap.
A typical spectrum has strong [ = 1 and [ = 2 peaks and sometimes either a
weak | = 3 peak or one or two weak low-frequency modes. The spectrum shown
in Fig. 4.10 is atypical, having been obtained with a large, wide plasma, and it
shows two prominent low-frequency modes. Even the more typical spectra taken in
the quadrupole trap have significant qualitative differences from the spectra (such
as Fig. 4.5) obtained in the cylindrical trap. The signal-to-noise ratio is greatly
improved by the superior signal coupling, but fewer of the purely axial modes are
detected, probably because of the different plasma shapes studied in the two traps.
The geometry of the hyperboloidal trap enforces the restriction L < 2z on the
plasma length. Because of the condition A\p < A for undamped plasma modes,
discussed in Sec. 2.3, fewer axial modes are expected for a short plasma. This is the

only disadvantage that we have found to using the quadrupole trap.
4.3 Temperature Dependence of Quadrupole Mode

With the most obvious problems of the cylindrical trap eliminated, it was
found that the mode frequencies still did not match the cold fluid theory. The
technique described previously of reducing B to obtain similar plasmas with different
aspect ratios was used to measure the dependence of the quadrupole (I = 2) mode
frequency on «a. In Fig. 4.11, the results are compared with the theoretical curves
for the Il = 2 and | = 3 modes. It is no longer necessary to divide by a value of wem
that is significantly different from w,, but with this excuse removed, the remaining

disagreement is substantial.

Much of this difference is caused by the nonzero temperature of the plasma.
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Figure 4.10: Spectrum of a wide electron plasma with N ~ 108 in the quadrupole

trap.
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Figure 4.11: Comparison of measured frequency (o) of the quadrupole mode (I1=2)

in the quadrupole (hyperboloidal) trap with the cold fluid theory (solid curves) for
l=2and !=3.
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Figure 4.12(b) plots the frequency of the quadrupole mode measured at various
times during a cycle of rf heating and cooling, with the plasma temperature shown
in Fig.4.12(a). Figure 4.13 shows the quadrupole mode frequency as a function
of temperature for three plasmas with different aspect ratios. The radial profiles
are shown in the inset. When the data are extrapolated to T = 0, frequencies
within about 1% of the cold fluid predictions for the quadrupole mode are obtained,

confirming our identification of the mode.

The cold fluid theory assumes a cold plasma of uniform density in an exactly
quadratic potential imposed by distant electrodes. To model effects not included in
the cold fluid theory, R. L. Spencer and G. W. Mason of Brigham Young Univer-
sity performed numerical simulations of the plasmas. The electrode voltages and
z-integrated density profiles of experimentally measured plasmas were used as in-
put to a Poisson-Boltzman equilibrium code. The resulting equilibria, from which
the plasma aspect ratios were obtained, were constrained to match the experimen-
tal density profiles and the total particle number. The computations were done
assuming axisymmetry and used a 120 by 240 grid for the coordinates p and z.

The computed equilibria were then used to create initial distributions for
particle-in-cell simulations which used the same spatial grid and electrode represen-
tation as the equilibrium computation. The center-of-mass and quadrupole modes
were excited by displacing all of the particles by a small amount in the same di-
rection in z and also by stretching the plasma along the z axis. The position of
the center of mass, z.m, and the density-average of the square of the position of
the plasma relative to the center of mass, ((z — zcm)?), were then tracked in time
and Fourier-analyzed to yield the frequencies of the center-of-mass and quadrupole
modes, respectively. The plasma was represented by 50,000 particles, which were

advanced through 16,384 time steps of 4 x 107° s each.
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Figure 4.12: (a) Temperature during a cycle of heating and cooling. (b) Variation
of quadrupole mode frequency. Inset: spectrum of unheated plasma.
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Figure 4.13: Temperature dependence of the quadrupole mode frequency for plasmas
with different shapes: (O), a = 2.24, L = 6.20 cm; (o), @ = 4.38, L = 7.52 cm; and
(A), @ = 7.80, L = 8.32 cm. Solid lines are the results of numerical simulations
of the plasmas. Arrows on the vertical axis show the cold fluid theory predictions;
dashed lines are from Eq. (4.6). Inset: radial profiles of the plasmas.
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The experimentally measured plasmas shown in Fig. 4.13 were studied using
these simulation techniques. From the Poisson-Boltzmann code, the aspect ratios
were found to be 7.80, 4.38 and 2.24. For each aspect ratio, simulations were made
for ten temperatures in the range 0.001 - 0.176 eV. The frequency ratio between
the quadrupole and center-of-mass modes shown by the solid lines in Fig. 4.13 is
in excellent agreement with the data. The simulation frequencies at the lowest
temperatures agree well with the predictions of Dubin’s cold fluid theory, which are
marked with arrows on the ordinate of Fig. 4.13. This is interesting in view of the
fact that the density profiles shown in the inset to Fig. 4.13 differ substantially from
the nearly uniform density expected for a plasma in global thermal equilibrium (and
assumed by the cold fluid theory). The insensitivity of the mode frequencies to the

plasma profile simplifies their use as diagnostics, as discussed in Sec.4.4.

An approximate analytical treatment of temperature effects on the quadrupole
mode frequency was proposed recently by Dubin [1993]. This model leads to a pre-

diction of a shift in the quadrupole mode frequency from the cold fluid result w§ to

wa [Dubin, 1994]:
ksT

mL?’

(w2)® = (wp)* +20[y — g(a)] (4.6)

with
o? wg 0? A3

9(a) = _Z—W 92’

where As(a) is defined in Eq. (2.11) and 4 = 3 is the ratio of specific heats for

(4.7)

one-dimensional expansions. All quantities on the right-hand sides of Eq. (4.6) and
Eq. (4.7) are evaluated in the cold fluid limit. The function g(«) describes the
frequency shift from the temperature-dependence of the plasma shape. If this term
is neglected, one obtains a result similar to the Bohm-Gross dispersion relation for a

warm neutral plasma, w? = w;‘,' + vk2kgT /m, with k, ~ w(I —1)/L. The two results
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agree reasonably well for the temperature-dependent frequency shift, but the cold
plasma limits are very different because the Bohm-Gross formula does not account
for the finite plasma geometry.

The data shown in Fig. 4.13 indicate that (w;)? is linear in T for the longer
plasmas studied, but deviates from linearity for the shortest plasma, for which the
temperature-dependence is strongest. For the same value of T' and the same mode,
the effect of temperature is stronger for shorter plasmas because the wavelength of
the mode is smaller, making the effective temperature higher. The slopes of the

curves at low temperatures agree reasonably well with the predictions of Eq. (4.6),

which are plotted as dashed lines in Fig. 4.13.
4.4 Diagnostic Applications

For positron and positron-electron plasmas, non-destructive diagnostics are
essential, and the measurement of the frequencies of plasma modes is an attractive
way of accomplishing this, because frequencies can be measured with great precision.
The modes studied are global, and thus they provide information on global plasma
parameters. For the purposes of mode studies, the spatial distribution is adequately
parametrized by the length, L, and aspect ratio, a, since the mode frequencies are
relatively insensitive to details of the radial density profile. Therefore, the cold fluid
equilibrium theory for a uniform-density spheroid [Eq. (2.10)] may be used to relate
the parameters N, «, and L:

_ 12¢?

2
mw?

L3

a®Asz(a)N. (4.8)

Thus, a measurement of N fixes a relationship between L and . Measurement of
two plasma modes combined with the results of simulations or warm fluid theory

would provide the additional relationships to uniquely determine L, «, and T, and
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hence also the plasma radius and density. If the temperature is known, as it is
in the presence of a buffer gas, then with N determined from the amplitude of
the center-of-mass response, Eq. (4.6) and Eq. (4.8) may be used to determine
L and a from the quadrupole mode frequency. Once the plasma parameters are
established, whether by these techniques or by other diagnostics, subsequent changes
in either temperature or shape may be deduced from additional shifts in a single
mode frequency, as in the data for w, during a heating pulse, shown in Fig. 4.12(a).
Alternatively, if the temperature can be controlled, the plasma length and aspect
ratio may be found from the slope and intercept of data for (w;)? vs. T. Applying
this technique to the data in Fig. 4.13, we obtain lengths of 8.5 cm, 7.3 cm, and 5.3
cm for the three plasmas, while the experimental values are 8.3 cm, 7.5 cm, and 6.2
cm, respectively.

The use of data from modes other than the quadrupole mode would benefit
greatly from a complete theory of finite-temperature spheroidal plasmas. Modes
with azimuthal structure, such as the [ = 2, m = 2, diocotron mode have frequencies
that depend on aspect ratio [Dubin, 1991; Dubin and Schiffer, 1994] and could
provide the data needed for complete determination of the bulk plasma parameters,

if their temperature-dependence were understood.

4.5 Positrons

All of the preceding data were obtained using electrons. At the time of
the early work in the cylindrical trap, the largest positron plasmas consisted of
about 10 positrons, and due to the anomalous damping and the poor sensitivity
of the cylindrical trap, even their center-of-mass motion could not be detected.
With the construction of the quadrupole trap, the sensitivity improved and the

anomalous damping vanished, permitting the detection of the center-of-mass motion
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of as few as 10* positrons, but no plasma modes were seen. The development of
a diagnostic based on plasma modes proceeded with electron plasmas, in the hope
that comparable positron plasmas would eventually be achieved.

Improvements in positron trapping efficiency and the recent upgrade to a
more efficient positron moderator have now produced plasmas of 10® positrons,
larger than many of the electron plasmas used for the mode studies described above.
Figure 4.14 is a mode spectrum obtained for such a positron plasma. Strong signals
are seen for the center-of-mass oscillation and for the I = 2 and | = 3 axial plasma
modes. A small peak at higher frequency may represent the | = 4 mode, or may
be noise. This spectrum was obtained for a plasma confined in the cylindrical trap,
where the positron trapping efliciency is highest. As with the electron plasmas,

fewer modes are observed in the quadrupole trap, but the quadrupole mode is seen.
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Figure 4.14: Spectrum of a positron plasma in the cylindrical trap. N = 6 x 107.



Chapter 5

Ion Plasmas

One of the motivations for constructing a ring electrode split into azimuthal sectors
was to determine the masses of the ions produced by positron annihilation [Passner
et al., 1989; Glish et al., 1994] by measuring their cyclotron frequency, the method
used in some commercial mass spectrometers. To test the technique, ions of a known
species were produced by ionizing atoms of a low-pressure gas using an electron
beam. It was quickly discovered that under typical conditions enough ions were
produced to form a plasma, a circumstance assiduously avoided in spectrometry
because of the variety of collective effects that result. In fact, in the approximately
1-kG magnetic field of this trap, the plasmas often reach the Brillouin limit, the
maximum possible density.

This chapter describes the conditions under which this maximum density
is attained and presents a simple model for the plasmas produced by continuous
ion production. Because of the unmagnetized nature of Brillouin-density plasma,
the standard diagnostics used for electron plasmas are less useful, and two different
techniques are employed to verify that spheroidal ion plasmas at the maximal density
are produced. Finally, azimuthal modes of the plasmas are studied over a range

of plasma aspect ratios. The frequencies of the various cyclotron and diocotron

75
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modes seen are found to agree quantitatively with the cold fluid mode theory of

D. H. E. Dubin [1991].

5.1 Ion Production

Ions are formed by passing an electron beam along the axis of the trap, as

shown schematically in Fig. 5.1. The rate at which ions are formed inside the trap

is approximately

dNion
d; ~ 220n,0; Iveam/ €, (5.1)

where o; is the ionization cross-section, n, is the density of neutral gas atoms, Ipeam
is the beam current, and 2z is the distance between the endcaps along the trap
axis. This ignores the variation of the beam energy inside the trap, which could be
included by using an averaged value of o;. lonization cross-sections typically rise
rapidly as the beam energy is increased above the first ionization threshold, Ej, and
reach a maximum value, 0y,ax, at a beam energy on the order of 100 eV. For argon,
Er = 15.8 eV and omax ~ 4 x 1071% cm? occurs at a beam energy of 90 eV. The

maximum is rather broad, so that a typical ion production rate for argon is obtained

by assuming o; ~ Omax:

dNAr+

5 = LLx 10%7" - plycam, (5.2)

where the beam current is expressed in microamps and the gas pressure, p, is in
microtorr.

The electron beam is emitted from the circular oxide-coated cathode of an
electron gun with radius r; = 0.7 cm in a magnetic field B, = 150 G. Its radius as

it passes through the trap will depend on the trap magnetic field:

Tbeam = rgv Bg/B (53)
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Figure 5.1: Exploded schematic of the ion plasma experiment, showing the electron
beam, the spheroidal ion plasma, and the electronics used for mode excitation and
detection.
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Thus the density of ion production is

Ed_ﬁ ~ dNion B
dt — dt 2mr2zB,’

(5.4)

or about 3.8 x 10® cm™3s~! for a one microamp beam passing through 107® torr of

argon in a magnetic field of one kiloGauss.

As with other sources of pure ion plasmas, production of doubly ionized par-
ticles is a concern. Again taking the example of argon, above the second ionization
threshold energy, Er; = 43.4 eV, Ar** ions are formed from gas atoms with a cross-
section that reaches its maximum value, 3 x 10717 cm?, at an energy of 120 eV. If
the beam energy is less than Ep; throughout the trap, production of Ar** ions will
be avoided. If this precaution is not taken, a small amount of the doubly charged
species will be produced. This is common in mass spectrometers, as for example
in Residual Gas Analyzers, which typically produce ions using a 70 eV electron
beam, and is not important for some experiments. In some work with pure ion
plasmas [Sarid et al., 1993; Sarid et al., 1994], however, the impurity species pro-
duces significant complications. By dumping steady-state plasmas and measuring
the time-of-flight spectrum, we have found that if the beam energy is substantially
higher than Eyr and V > V;, the plasma consists predominantly of doubly ionized
particles, which are preferentially confined. If V < V,, the plasma is mostly singly
charged particles. This change in character can easily be confused with another in-
teresting phenomenon, which will be described below. To avoid these complications,

the beam energy is kept below Ejj.
The temperature of the ions is difficult to establish experimentally, due to
the failure of the charge-dumping procedure (see Sec. 5.3) upon which the magnetic

beach temperature analyzer depends. The energy imparted to a gas atom during an

ionizing collision with an electron is small, so that the initial ion energy distribution
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will range from 0 to ¢V, due to the quadrupole trap potential. Once significant space
charge has accumulated and flattened the potential well, ions will be formed with a
narrower range of energies. Collisions of ions with neutrals are expected to be mostly
charge-exchange collisions, in which the ion removes an electron from a neutral with
very little exchange of kinetic energy. The original ions are thus replaced by ions
with the room-temperature energy distribution of the neutral gas. This strong
cooling mechanism may be one reason that the frequencies of the azimuthal modes
described in Sec. 5.5 are in good agreement with the cold fluid theory. The mean
free path for charge-exchange of 10-eV Art ions in 1 ptorr of Aris ~ 7 x 10® cm
[Brown, 1959], so that the mean time between collisions is of the order of 10 ms.
This is fast compared to the confinement time for a single particle, but it is not
clear how it compares to the confinement time of particles in the unusual plasmas

described in the following section.
5.2 Steady-state Plasma Model

The Brillouin density [Eq. (2.12)] for argon ions in a magnetic field of 1 kG
is ng = 6.63 x 10° cm™3. Small numbers of ions have a confinement time of the
order of 1 s at a neutral gas pressure of 107° torr, so that with ions being formed in
the path of the beam at a rate greater than 108 cm™3s™1, the density will approach
the Brillouin limit in a matter of milliseconds, unless space charge is sufficient to
allow ions to escape through the endcaps. This latter possibility will occur for low
confining potentials. We can estimate the minimum value of V required to prevent
such a loss by considering a spheroidal equilibrium plasma with the diameter of the

electron beam, the length of the trap, and the Brillouin density. The value of V for
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which this equilibrium is obtained is found from Eq. (2.10), which may be written

o —1

2
2y = Qe — D >

by setting n = ng and @ = zp/Tbeam. For argon ions in a magnetic field of 1 kG, the
result is Viuin = 0.45 volts. By contrast, for an electron plasma of the same diameter
as the electron beam to have the Brillouin density would require a confinement

voltage greater than 30 kV.

For the ion plasmas we have studied, V > Vi, so charge is not expected to
escape along the trap axis before the Brillouin density is reached. Radial transport
due to gas scattering will be minor on the millisecond time-scale, but once the Bril-
louin density is reached, the addition of more ions will cause immediate expansion
due to the loss of radial force balance. The ion distribution that evolves as ions
are continually added is probably not a true thermal equilibrium, but because of
the nearly unmagnetized nature of the interior of these high density plasmas, it
may be reasonable to assume that the force balance achieved in equilibrium is ap-
proximately attained by these plasmas. The data presented in Sections 5.3 and 5.4
support the contention that the plasmas formed in steady state may be adequately
described as Brillouin-density spheroids with aspect ratios determined by the cold
fluid equilibrium [Eq. (5.5)].

With the aspect ratio determined by the Brillouin density and the confining
voltage V according to Eq. (5.5), the remaining ingredient of the model is the plasma
size. With ions being continually produced, the plasma will grow in size (maintaining
a fixed aspect ratio) until it contacts one of the electrodes, after which additional
ions formed will flow to that electrode, and a steady state will be established. For a
fixed value of B, the aspect ratio varies with V', with increasing values of V leading

to increasingly oblate spheroids. A plasma with an aspect ratio of a = 1/v/2 has
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the right shape to touch both the endcaps and the ring electrode, giving it a volume
of about 2 x 10> cm?, the largest spheroidal plasma that may be confined in this
trap. The confinement voltage, V;, that produces this plasma shape may be found
from Eq. (5.5), and can be shown to be a constant multiple of the critical voltage,

V., above which confinement is lost:

V= (2—n/2)V.. (5.6)

For V < V;, the plasma length is fixed at L = 2z, and excess ions leave through
the endcaps. Due to collisions, some particles will be transported radially out of the
Brillouin-density core and will diffuse to the ring electrode. Our inference is that
they form a tenuous halo plasma surrounding the core. For V > V,, the plasma
radius is fixed at r, = po, and there is no halo plasma. The plasmas described by

this model for various values of V are shown schematically in Fig. 5.2.

5.3 Total Charge Measurement

It would be desirable to measure the plasma profiles directly by dumping
the plasma onto the collector plates. There are two difficulties with this approach.
The most fundamental problem is that if the plasmas are indeed near the Brillouin
density, then the particles are not following magnetic field lines in the tight helices
familiar from low-density electron plasmas. It is possible that during the dump the
particles may become sufficiently magnetized to give some information. A problem
specific to this experiment is that these large plasmas must be dumped through the
moderate-sized hole in one of the endcaps. One might still hope to obtain data on
the central portion of the plasma, but instead a sort of universal profile, shown in
Fig. 5.3, is obtained for all but the narrowest plasmas. Although the total charge

received varies, the distribution is always strongly peaked in the center. This is
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Figure 5.2: Model of the steady-state ion plasma for (a): Vmin < V <V, endcap-
limited plasma with halo, & > 1/v/2, (b): V = V,, transition plasma, o = 1/v/2,
(c): V; < V < V,, ring-limited plasma, o < 1/4/2 and (d): V =V, disk plasma,
a = 0. For V > V_, there is no plasma.
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Figure 5.3: Radial profile data for argon ion plasmas with V spanning the range
Vmin < V' < V,, each scaled by its central value, showing failure of the\density

diagnostic.
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consistent with a particle orbit radius comparable to or larger than the hole in the
endcap, as is expected from the model. The difficulties with charge dumping also
prevent us from measuring the plasma temperature.

We have no replacement for the incapacitated profile measurement, but under
some conditions, a measurement of the total plasma charge can be obtained by
measuring the image charge flowing onto the confining electrodes as the trap fills.
Because the filling is rapid (about 100 ms), a current spike is produced on the ring
electrode when the electron beam is first switched on. For V < V;, this spike is
clearly distinguishable from the dc current which is established once the trap has
been filled. Typical current traces, obtained using an electrometer, are shown in
Fig. 5.4. The total charge is obtained by integrating the current spikes from all
electrodes and correcting for the contribution from the image charge of the beam,
which causes the small negative current spike seen at ¢ = 0. The measurement
is unambiguous for small values of V, but as V approaches V;, the current traces
become more complicated, as shown in Fig. 5.4(b), making it difficult to decide
when to stop the integration. The reason for these complicated features is not
understood, but may be involved with the formation of a plasma sheath at either
the endcaps or the ring electrode. For V > V;, there is no clear separation between
image charge current and the arrival of the steady state current, and the technique
is not applicable.

Figure 5.5 shows how the measured stored charge increases as V' is increased.
The error bars represent the uncertainty introduced by transient features of the sort
shown in Fig. 5.4(b). The solid symbols represent the most plausible analysis. Using

the model described in Sec. 5.2, the total charge in the Brillouin core is given by

Q = 4rrionp/3, (5.7)
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Figure 5.4: Current transient to the ring electrode when electron beam is switched
on at t = 0, for an argon plasma with B = 1.31 kG and (a): V = 5 volts; (b):
V = 12.5 volts. The arrows indicate the integration endpoints corresponding to the
bounds of the error bars in Fig. 5.5.
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Figure 5.5: Total charge of argon ion plasma with B = 1.31 kG and various values
of V. The solid line is from the steady-state model.
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which is shown by the solid line in Fig. 5.5. The agreement between the data and
the model is reasonably good, and at least verifies that the total charge is within
about a factor of two of the model for V' < V;. This analysis ignores the halo of
particles believed to surround the Brillouin spheroid. The mode frequency data

described in Sec. 5.5 suggests that this halo is not insubstantial, but we have no

other information regarding it.
5.4 Transition in Ring Current

Less direct, but more convincing, evidence for the Brillouin spheroid model
can be obtained by monitoring the steady state current to the ring electrode. As
may be seen in the transient current traces shown in Fig. 5.4, the steady state
current depends on V. It also depends on B, on the electron beam current, Iieam,
and on the gas pressure, and all of the observed dependences are consistent with
the model. In Fig. 5.6, the steady-state current to the ring is plotted as a function
of V for various values of B and Iyeam. In each case, the ring current is small for
low values of V, corresponding in the model to the condition [Fig. 5.2(a)] in which
the core plasma is not in contact with the ring, and most excess ions leave via the
endcaps. The current increases with V until an abrupt increase occurs, presumably
when V ~ V; and the plasma contacts the ring [Fig. 5.2(b)]. The transition often
shows substantial hysteresis, in which case the value obtained by approaching from
lower values of V is recorded, since it matches the result obtained by dumping the
plasma and refilling. The hysteresis may be associated with the formation of a
plasma sheath when the ring is contacted. Further increases in V result in only
slight increases in the ring current, which should now be the entire ion formation
current. Comparing the different cases, we note that the value of B affects the value

of V;, but not the current for V' > V,. The beam current affects the current for
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Figure 5.6: Steady-state current to the ring electrode as a function of V for an argon
plasma at a pressure of 2.4 x 1072 torr and with (0): B = 290 G, Iheam = 10uA;
(0): B =290 G, Iveam = 40uA; (O): B = 580 G, Jpeam = 10pA; (0): B = 580 G,
Ibeam = 40,uA. ’
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V > V,, as expected, but not for V < V;. This is consistent with gas-scattering-
induced radial current from the Brillouin core. As long as the ion formation rate
is sufficient to keep the core filled, additional ions will leave through the endcaps,
having no effect on the current to the ring. Finally, it is found that the ring current
is approximately proportional to the gas pressure for all values of V. For V > V;,
this simply represents another way to get extra ion formation, which should add to
the ring current. For V < V,, the extra ions have no effect, but the rate at which
ions scatter out of the core and migrate toward the ring is increased.

Because of the large hole in each endcap, most of the ion current that would
flow to them for V' < V; passes through the hole. The maximum endcap current is
collected for V ~ V,, as expected, since these wide plasmas might be expected to
make some contact with the endcaps.

Figure 5.7 shows the measured value of the transition voltage as a function
of magnetic field for four ion species. Also shown in this figure are the expected
dependences, V; = (2 — 7 /2)V,, based on the model described in Sec. 5.2. No fitted
parameters are used.

The excellent agreement between the model and the experiment, both for the
total charge and for the ring current threshold, supports the contention that most

of the charge is contained in a plasma core at a density near ng, with a diffuse halo

plasma.

5.5 Azimuthal Modes

Plasma modes are excited by applying a signal to one of the sectors of the
ring electrode and detecting the plasma response on the opposite sector, as shown in

Fig. 5.1. Frequency spectra are measured using a spectrum analyzer and a tracking
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Figure 5.7: Measured transition voltage as a function of B for four different ion
species. Solid lines are from the model.
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generator. A typical spectrum is shown in Fig. 5.8, and two families of modes are
discernible. One family has frequencies near ), and has some similarity to the
cyclotron modes studied by Gould and LaPointe [1991,1992] in electron plasmas.
The lower-frequency family are the diocotron modes [Davidson, 1990]. A series of
spectra like that shown in Fig. 5.8 were taken for steady-state argon plasmas for
various values of V in the range Viun < V < V.. Figure 5.9 displays the frequencies
of the resonances observed as functions of V. A striking feature of the data is
the wide variation seen in the frequencies as V is varied over the range of values
providing confinement. It is also evident that the character of the modes changes
near V = V,.

The plasma modes that should be most strongly excited by this technique
are the purely azimuthal modes of the form 6® ~ ei(™#=“%) discussed in Sec. 2.2.
The indicated values of m were determined experimentally by the phase differences
between the signals detected on different sectors. Because pairs of cyclotron and
diocotron modes with the same values of m are detected, the rotation frequency
may be deduced using Eq. (2.30). The open circles in Fig. 5.9 are the values of w,
obtained by applying this procedure to the observed mode frequencies, using m = 2,
m = 3, and m = 4 modes for V < V; and the m = 2 modes for V > V,.

Consider now the modes for V < V;. As shown in Fig. 5.9, the inferred
rotation frequency (shown by open circles) is close to 20\, rather than Q./2, which
would characterize the Brillouin core. We interpret this to mean that the observed
modes are supported in the halo plasma, which effectively shields the core. Using
these inferred rotation frequencies, we find that the frequency data may be fit to
Eq. (2.28) by assuming wﬁGm = K,w?, where K; = 0.69 and K,, = 1.24 for m > 1.
These fit curves are the solid lines plotted for V < V; in Fig. 5.9. Also shown, for the

whole range of V, are {2y and €, which should not depend on plasma parameters.
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Figure 5.8: Spectrum of azimuthal modes of an argon plasma, showing diocotron
modes (0 to 10 kHz) and cyclotron modes (20 to 30 kHz). The numbers indicate
experimentally determined values of m.
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Figure 5.9: Azimuthal mode frequencies of argon plasmas with B = 640 G as
functions of V. Values of m determined experimentally. w, calculated from mode
frequencies using Eq. (2.30). Solid lines are described in the text.
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The implications of this fit and of the observation that w, ~ 2y for the nature of

the halo plasma are not understood at present.

For V > V;, the ring current data lead us to believe that the entire plasma
can be described as a uniform-density spheroid with n ~ ng. Using Eq. (2.8) to
determine w? (and thus n) from the measured values of w, shown in Fig. 5.9, we
find that n varies from 0.96ng to greater than 0.99ng for all values of V' above V;.
After using Eq. (2.10) to calculate o from w2, we can use Eq. (2.28) to find the mode
frequencies predicted by the cold fluid theory. The results are displayed in Fig. 5.9
as the solid lines shown for V > V;. These calculations are in good agreement with
the data, without using any fitted parameters, except for the m = 1 modes. This
discrepancy could result from the effects of image charge, which are not included
in the model and which are expected to be most pronounced for modes with the
lowest m-numbers. We note, however, that the sum of the frequencies of the m =1
modes is quite close to ., which could account for the excitation of the weak mode
observed near §)., via a nonlinear coupling. We note also that a mode coupling
occurs between the m = 1 cyclotron mode and the m = 2 diocotron mode near
V =0.75V..

The remarkable simplicity of the steady state of these plasmas, the surprising
degree to which the spheroidal mode theory is satisfied, and the apparently rich
variety of phenomena that may be observed suggest that further experiments with
similar systems are warranted. A pulsed beam could produce similar plasmas which
do not touch the walls, and other variations are also possible. It appears that

creating and studying plasmas at the Brillouin limit is both interesting and relatively

straightforward.



Chapter 6

Conclusions

The original goal of this work, the development of a technique to monitor trapped
positrons, has been achieved. The small number of positrons initially available and
the relatively low temperature to which they cool led to the consideration of plasmas
in quadrupole potentials, the approximate form near the minimum of any potential
well. In this sense, the apparently exotic spheroidal geometry is perhaps the most
natural one for single-component plasmas.

Much of the work of this thesis may be considered as experimental verifi-
cation of various aspects of Dubin’s comprehensive normal mode theory. As such,
it complements the work at NIST [Heinzen et al., 1991; Bollinger et al., 1993], in
which excellent agreement with the theory has been obtained for the frequencies of
the quadrupole mode and the [ = 2, m = 1 mode of cold ion microplasmas. Under
the proper conditions, confidence in the theory is sufficient to justify its use as a
measurement tool, as in the studies by Weimer [1993] of cryogenic electron plasmas.

Because some of the conditions of our experiments are set by considerations
other than the production of small, cold, precisely spheroidal plasmas, we have
had to consider the effects of various perturbations. Important effects of which we

are aware include those due to image charges (the plasma is not small enough),
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nonuniform density profile (the plasma is not in global thermal equilibrium), trap
anharmonicity, and plasma temperature. At this point, some progress has been
made in understanding the frequency shifts caused by finite temperature, which
can now be used to measure this important quantity. By varying N, varying the
trap anharmonicity, and allowing electron plasmas time to reach equilibrium after
pumping out the buffer gas, it may be possible to unravel the separate effects of
the remaining perturbations, and such experiments are planned. The success of
the numerical simulations by Spencer and Mason in matching the quadrupole mode
data suggests that such calculations could be of great use in this endeavor. That all
these complications may be treated as small perturbations to the cold fluid theory,
even for the rather extreme case of the large ion plasmas discussed in Ch. 5, suggests

that the theory will continue to be of great utility.

The very simple technique described in Ch. 5 for generating ion plasmas may
prove to be of use in other single-component plasma traps. Electron plasma machines
usually have rather low magnetic fields by the standards of ion plasma experiments,
but this makes the Brillouin limit easily accessible, and their very nice electron beam
hardware is ready to use. A puff of gas could be introduced by a valve and used
to form a plasma, after which the remaining gas would quickly pump away. The
plasmas need not reach the Brillouin density nor touch the wall, and some interesting
studies might be made of transport in plasmas that follow guiding-center dynamics
to varying degrees. Even in ion plasma machines, which are typically designed to
use laser-induced fluorescence diagnostics and are thus restricted to ion species with
favorable atomic properties, the ability to form plasmas of predominantly the singly
ionized species might be of occasional use. In one ion plasma trap [Sarid et al.,
1994], some difficulties have been ascribed to the injection of plasma from a low-

field source region into the high-field center of the trap. The formation of ions inside
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the confinement region might be of use in the study of such phenomena, though this

technique cannot produce the Mg ions required for that experiment.

Quadrupole traps and spheroidal plasmas offer the chance to approach some
of the unsolved problems of nonneutral plasmas from a new perspective. If a phe-
nomenon has been tentatively identified as a “3D” effect in cylindrical plasmas, it
might be interesting to repeat the experiment with spheroidal plasmas, in which
the 3D nature is under experimental control and is perhaps better understood. The
features that make quadrupole traps appealing to atomic physicists, the exactly sol-
uble simple harmonic motions of single particles and their long confinement time,
may make for an interesting test of field-error transport, since resonances with field
errors could be very strong (the harmonic frequencies do not shift off resonance as
the amplitude of motion grows) and would be shared by all particles, if space charge
is negligible. Because good confinement does not require the strong self-field of a
well-developed plasma, it may also be possible to learn about the nature of marginal
plasmas and of the transition, seen in one guise in Fig. 4.3(a), from independent
particle motions to the collective behavior of a plasma.

The experimental study of spheroidal plasmas has not yet advanced to the
degree of maturity achieved in the study of cylindrical plasmas. I hope that the
work presented in this thesis will persuade other researchers of the many interesting

plasma experiments waiting to be done in quadrupole traps.



Appendix A

Associated Legendre Functions of
the Second Kind

The associated Legendre functions of the first kind (P™) and the Legendre polyno-
mials, P, = P, are frequently encountered in theoretical physics. The associated
Legendre functions of the second kind (Q7*), however, are less familiar. The lowest-
order functions are presented here for convenience.

A possible source of confusion is the presence in the literature of two differ-
ent definitions of these functions associated with different choices for the required
branch cut. The argument of these functions as used in the spheroidal equilibrium
[Eq. (2.10)] and the dispersion relation [Eq. (2.26)] is k; = a(a? — 1)7/2, which
varies over the range 1 < k; < oo for plasma aspect ratios in the range 1 < a < oo.
Thus, a common definition of the Q*’s which places branch cuts along the real axis
from —oo < R(z) < —1 and from 1 < R(z) < oo, is not useful. Instead, a single
branch cut is placed along the real axis from —oco < £(2) < 1. This choice of branch
cut may be enforced when performing calculations with the symbolic math program

Mathematica by the declaration “LegendreType — Complex” in the function call.

Some of the functions relevant to the axial plasma modes are
QK@) =-1+5mn (35
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Functions appearing in the azimuthal mode theory include

[-2z + (22 —1)In (2)] /2V1 — 22
[—62° + 10z + (3z* — 62% + 3)In (Z)] /2(1 — 2?)
[~3025 + 802° — 66 + (152° — 452" + 4522 — 15) In (2£2)] =)=

—2284+6x% —61r242"°

A few other functions may be of use in future experiments:

1

Il

[—62% + 4 + (32° — 3z) In (&2)] /2v/T — 22
[-302% + 26z + (152* — 182 + 3) In (££1)] 4v/1 — 22
[—30z* 4 502% — 16 + (152° — 302 — 15z) In (ZE1)] /2(1 — 2?).



Appendix B

Analytical Formulae for
Spheroidal Plasmas

An explicit form for the spheroidal equilibrium, expressed in terms of Q9 in Eq. (2.10),
is

(a? — 1)3/2 [% In (51_3:\/3;:_;) JaT 1] T el (2.1)

This corresponds to 1/B(a), in the notation of Heinzen [1991].

2
Wy

fé { (1 — a?)3/? [\/1—a2—aarcsin\/1—a2|_1, fora <1

The frequency of the quadrupole mode of a cold, strongly magnetized spheroidal
plasma has the somewhat ungainly form
(£ 1y 3 () e
o =1 gy (etfEel) ool 1

a—vVa?-1

; (2.2)

for o > 1, the case typical of our electron plasmas.

Finally, a few notes on the roots of the dispersion relation of axial modes for

the strongly magnetized case. The dispersion relation, Eq. (2.27), may be written

in the form
(K = V)P (k1) = wi(a)ky Pi(k1), (2.3)

where k; = a(a? — 1 4+ w?/w?)7/% and

1 Q=
ave? -1 QN75=)

wi(a) =

(2.4)
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Equation (2.3) is a polynomial in k; of order I+ 1, with coefficients that depend on a.
For even values of [, a factor of k; divides out. For any [, the result is a polynomial
in k? of order [(I + 1)/2], where “[]” denotes the maximum integer. Thus, there is
one root for [ = 1 or I = 2, and there are two roots for [ = 3 or | = 4, etc. Each
solution for k7 at a particular value of  translates into the value of w for the normal
mode, scaled by w,. The different eigenvalues of w obtained for the same values of !
and m correspond to normal modes with different radial structure. The modes with

purely axial structure have the highest frequencies.
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